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We present a novel platform for the large-scale simulation of three-dimensional fibrous 
structures immersed in a Stokesian fluid and evolving under confinement or in free-
space in three dimensions. One of the main motivations for this work is to study the 
dynamics of fiber assemblies within biological cells. For this, we also incorporate the key 
biophysical elements that determine the dynamics of these assemblies, which include the 
polymerization and depolymerization kinetics of fibers, their interactions with molecular 
motors and other objects, their flexibility, and hydrodynamic coupling. This work, to 
our knowledge, is the first technique to include many-body hydrodynamic interactions 
(HIs), and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-
local slender body theory to compute the fluid–structure interactions of the fibers and 
a second-kind boundary integral formulation for other rigid bodies and the confining 
boundary. A kernel-independent implementation of the fast multipole method is utilized 
for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear 
Euler–Bernoulli beam theory and their polymerization is modeled by the reparametrization 
of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-
spectral representation of fiber positions and implicit time-stepping to resolve large fiber 
deformations, and to allow time-steps not excessively constrained by temporal stiffness 
or fiber–fiber interactions. The entire computational scheme is parallelized, which enables 
simulating assemblies of thousands of fibers. We use our method to investigate two 
important questions in the mechanics of cell division: (i) the effect of confinement on the 
hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of 
mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability 
of the method, we simulate the sedimentation of a cloud of semi-flexible fibers.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Semi-flexible biopolymers constitute a principal mechanical component of intracellular structures [11,66,6]. Together with 
molecular motors, fiber networks consisting of such polymers form the cytoskeleton that is the cell’s mechanical machinery 
for executing several key tasks including cell motility, material transport, and cell division [41]. From these semi-flexible 
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filaments (microtubules, actin filaments and intermediate filaments) and a variety of molecular motors the cytoskeleton is 
able to reorganize into supramolecular architectures that are distinctly designed to perform a particular task [24,41].

Due to their central role in intracellular structures the rheology and collective dynamics of semi-flexible fiber suspensions 
and networks has attracted increasing interest in engineering and biology [11,92].

The basic physical difference between semi-flexible fibers and their better-understood counterpart, polymer chains, is the 
significantly larger bending rigidity of fibers that then yields larger end-to-end distances. This results in many interesting 
differences between the rheology of semi-flexible polymers and that of the two extreme limits of flexibility, polymer melts 
and rigid fiber suspensions. For example, the stiffness of semi-flexible networks can increase or decrease under compression 
and their suspensions show negative normal stress differences [7,66,11].

With advancements in microscopy and data acquisition at small time- and length-scales, we now know a great deal 
about the interactions of the individual microscopic filaments and their associated motor proteins. On the other hand, we 
know very little about how they interact collectively and how these interactions determine the ensemble behavior of cellular 
matter and structures.

Microrheological measurements provide a strong basis for understanding the mechanical behavior of cytoskeletal struc-
tures and matter [110,66,98], but do not directly inform us of the relationship between microscopic interactions and 
macroscopic behaviors. Moreover, living systems typically operate far from equilibrium — due to internally generated forces 
being much larger than thermal forces — and a constitutive relationship is required to extract rheological behavior based on, 
for example, the trajectories of probe particles. Finding microscopic constitutive relations is difficult even for the simplest 
of out-of-equilibrium complex fluids, a hard-sphere colloidal suspension, due to the complex and nonlinear relationships
between rheological properties and microstructural dynamics [68].

Dynamic simulation is a powerful tool to gain insight into the underlying physical principles that govern the formation 
and reorganization of cytoskeletal structures and to ultimately find relevant constitutive relationships. With the continuous 
advancements in in vitro reconstitution of cellular matter, comparing experiments with in silico reconstitution (i.e., detailed, 
large-scale, dynamic simulation of cellular structures) is within reach [6]. To this end, this paper presents a computational 
platform for dynamic simulation of semi-flexible fiber suspensions in three-dimensional Stokes flow. Our method explicitly 
accounts for fiber flexibility, their polymerization and depolymerization kinetics, their interactions with molecular motors, 
and hydrodynamic interactions (HIs). From a physical point of view, what distinguishes our method is the inclusion of HIs, 
which has been almost entirely ignored in the previous theoretical and numerical studies of cellular structures [11].

A common argument for ignoring HIs is that these potentially long-ranged interactions are screened, due to the presence 
of other filaments, beyond length-scales larger than the average separation inter-filament distance. However, whether effec-
tive screening is actually present depends on many technical details of the flow, such as whether the immersed bodies exert 
net forces or torques on the fluid, or are free to move [79,72]. Our computational studies, presented here and elsewhere [69], 
strongly argue that long-ranged HIs are essential components of cellular mechanics. For example, in a concurrent work [69], 
we computationally study so-called pronuclear migration, which occurs in the lead-up to the first cell division in C. elegans 
embryo. For proposed force-transduction mechanisms for migration, we show that ignoring HIs leads to mispredictions of 
the required active forces by an order of magnitude. We show further that each mechanism gives rise to unique features in 
the generated cytoplasmic flows, and we propose flow measurement as a tool to differentiate between active mechanisms. 
In Section 4.1 of this work, we show that while coarse-grained theories such as the Brinkman equation for porous medium 
flow can predict some features of the mechanics of cytoskeletal motion, other features, including the relaxation time of mi-
crotubule filaments of the cytoskeleton, cannot be predicted. One important use of detailed simulations, like those presented 
here, is to directly test the validity of simplifying assumptions such as screening or use of a Brinkman approximation, as 
well as to inform and modify theories for the collective behavior of complex assemblies such as the cytoskeleton.

We consider suspensions of hydrodynamically interacting rigid bodies and flexible fibers immersed in a Stokesian fluid, 
either under confinement or in free-space. Our approach is based upon boundary integral formulations of solutions to the 
Stokes equations. The flows associated with the motion of rigid bodies and confining surfaces are represented through a 
well-conditioned second-kind boundary integral formulation [80]. The fluid flows associated with the dynamics of fibers are 
accounted for using non-local slender body theory [48,44,31,102].

Related work. Modeling approaches to suspensions and networks of fibers can be roughly categorized into volume- and 
particle-based methods. In volume-based methods, the Stokes (or Navier–Stokes) equation is solved by discretizing the 
entire computational domain. Within this class, immersed boundary methods have been applied to study the dynamics of 
single [99,55] or several [109] flexible fibers. The fibers are typically represented by a discrete set of points (forming a 
one-dimensional curve [99,109], or a three-dimensional cylinder [55]) whose interactions capture stretching stiffness and 
internal elastic stresses. These points on the fibers are Lagrangian and so are moved with the background fluid flow. The 
consequent stretching or bending of the discretized fiber creates elastic forces represented at the Lagrangian points. These 
forces are distributed to the background grid, which then provides forcing terms solving anew the Stokes or Navier–Stokes 
equations for the updated background flow. This cycle is then repeated. A similar update strategy has been adopted using 
the Lattice Boltzmann method [112] to study the rheology of flexible fiber suspensions. Typically, to properly account for 
fluid–structure interactions in volume-based methods, the size of the volume grid is taken to be several times smaller 
than the smallest dimension of the immersed bodies. As a result, these methods become computationally expensive for 
simulating slender bodies such as fibers and thin disks. Moreover, these methods typically use explicit time-stepping to 
evolve fiber shapes, and elastic forces that substantially limits the region of time-step stability [56] due to temporal stiffness.
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Versions of particle-based methods include bead-spring models, regularized Stokeslet, variations of dissipative particle 
dynamics [15,33], and slender-body theory (which we use in this work). In bead-spring models, the fiber is represented as 
a chain of rigid spheres [113,114,27] or ellipsoids [88] linked by inextensible connectors with finite bending rigidity [45]
or by springs with given tensile and bending stiffnesses [88,70]. The system is evolved by imposing the balance between 
hydrodynamic and elastic forces and torques on all beads. Some implementations of this method include long-range hy-
drodynamics as well as short-range lubrication interactions [113,114,45], while others only include local drag on the beads 
[88]. The advantage of these techniques is their relatively simple implementation. Due to the discreteness of the fiber in 
this construction, the polymerization of fibers is captured by adding and removing beads and springs discretely in time 
[70]. Recently, a versatile approach for modeling suspensions of rigid particles was presented in [105], in which particles 
are constructed using spherical “blobs” constrained to move as rigid bodies. This approach can be generalized to deformable 
fibers.

Alternatively, the Regularized Stokeslet Method (RSM) [17,18] has been used to model the dynamics of elastic fibers in 
Stokes flow [25,96,74]. The RSM represents the fluid velocity as the superposition of smoothed fundamental solutions to the 
Stokes equation, with spread δ, distributed on immersed surfaces [18]. To be convergent, this method needs area elements 
to be scaled proportionally to δ2 [18]. Smith [96] removed this constraint by formulating the integrals in the context of a 
boundary element method. Flores et al. [25] used this framework to study the role of hydrodynamic interactions on the 
dynamics of flagella. Olson et al. [74] combined the elastic rod model developed by Lim et al. [55] with the RSM to study 
the dynamics of rods with intrinsic curvature and twist. In the context of fibers, the RSM is similar to slender body theory 
but to achieve the same order of accuracy in velocity as in slender body theory, the regularization factor δ needs to be on
the order of the aspect ratio of the fibers. This becomes computationally demanding for slender objects.

In Boundary Integral (BI) methods, the Stokes equation is recast in the form of integrals of distributions of point forces, 
torques, and stresses on the boundaries of the fluid domain. As a result, the computational domain is reduced to the 
two-dimensions of the immersed surfaces. In Slender Body Theory (SBT), the slenderness of the fiber is used to asymptoti-
cally reduce the BI formulation to one-dimensional integrals along the fibers’ centerlines. This results in non-local slender 
body theory (NLSBT) [48,44,31,102], which is asymptotically accurate to O

(
ε2 logε

)
, where ε � 1 is the aspect ratio of 

the fiber. Shelley and Ueda [93] designed numerical methods for simulating closed flexible fibers based on NLSBT which 
Tornberg and Shelley [102] extended substantially to fibers with free ends and devised algorithms to make the problem 
tractable and numerically stable.

Contributions. We extend Tornberg and Shelley [102] to enable simulation of O(1000) actively driven semi-flexible filaments. 
To achieve this, we introduce several enhancements:

• Spectral spatial discretization: A Chebyshev basis is used for the representation of fiber position, enabling us to com-
pute high-order derivatives with high accuracy along the fiber.

• Fiber (de)polymerization: In biological settings the polymerization/depolymerization of biopolymers is a crucial part of 
their dynamics. Here we account for this dynamics by reparametrization of the dynamic equations into a non-Lagrangian 
frame. We found this formulation to be considerably more stable (at least in our setting) compared to introducing 
segments at discrete moments in time, as is done in other approaches [70].

• Removing numerical stiffness: In the framework of Tornberg and Shelley [102], the bending forces were treated im-
plicitly to remove temporal stiffness, while the tension equation — which imposed inextensibility of the fibers — was 
treated explicitly. In our numerical tests outlined in Section 3.5 and the first two of our computational experiments in 
Section 4.1 and Section 4.2, the fibers are within a confined volume. In such conditions, the average distance between 
the fibers decreases with increasing the number of fibers. This results in the increase of the rate of change of flow 
induced by tension forces from other fibers with time, on any given fiber. Since Tornberg and Shelley [102] treat this 
term explicitly, we found that their numerical scheme gives severe limitations on the time-step magnitude for large 
numbers of fibers. In our method, both bending and tensile forces are treated implicitly. As a result, the time-step in 
our scheme shows little if any dependency on the number of points per fiber and is only weakly dependent on the 
number of fibers.

• Computational cost of O(N) and full parallelization: Due to the implicit treatment of the HIs and use of a BI method, 
at each time-step a dense system of equations must be solved. We solve this system using GMRES with a Jacobi or 
block Jacobi preconditioner. A kernel independent fast multipole method (FMM) [115,58] is utilized for fast compu-
tation of nonlocal hydrodynamic interactions, and fast matrix–vector products. The combination of GMRES, efficient 
preconditioning, and FMM results in O(N) computational cost per time-step, where N is the number of unknowns, 
approximately proportional to the number of fibers. Due to implicit treatment of bending and tensile forces as well as 
the HIs, the stable time-step is three orders of magnitude larger than the stable time-step for the explicit method. The 
entire computational scheme, including the FMM routine, the matrix–vector operations in GMRES, are parallelized and 
scalable to many computational cores.

To test our scheme and to demonstrate the variety of problems that can be studied within this framework, we considered 
three representative problems. We first investigate the mobility and viscoelastic behavior of a spherical particle surrounded 
by a fibrous shell and compare our results with analytical results obtained by using the porous medium Brinkman model 
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Fig. 1. Schematic. The gray-shaded region denotes the fluid domain �. The outer boundary is denoted by �0. There are rigid particles and flexible fibers 
suspended within the domain. The fibers and particles interact hydrodynamically with each other. Fibers may be attached to particles by different means 
that are specified through the boundary conditions on their ends (e.g. hinged or clamped). When attached, fibers exert force F ext and torque Lext upon 
rigid particles. Fibers can also move freely or sediment within the fluid domain. The velocity at a point x ∈ � results from the motion of particles uP , 
fibers uF , and the backflow due to the confinement u�0 . (For interpretation of the colors in this figure, the reader is referred to the web version of this 
article.)

for the shell [10,61]. Through this example we clearly demonstrate that both HIs, and fiber flexibility play critical roles in 
setting the dynamics of fibrous networks. Next, as an application of the current framework to cellular mechanics, we study 
the effect of cell geometry on the positioning of the pronuclear complex (PNC) in the prophase stage of cell division in C. 
elegans [19]. For this purpose, we consider three cell geometries and two different proposed force transduction mechanisms 
for moving the PNC. We demonstrate that changing the geometry of the cell and the forcing mechanism both result in 
substantial changes in the PNC positioning dynamics. Finally, to demonstrate the utility of our method beyond biological 
settings, we then look at the sedimentation of a cloud of flexible fibers, a classical suspension mechanics problem. We 
find that many-body hydrodynamic interactions rearrange the fibers, resulting in evolution of the cloud into a torus-like 
structure.

Our simulation results in all three problems are consistent with available theoretical predictions and previous experi-
mental and simulation results. More importantly, our study of each problem revealed several other interesting directions of 
research which can be pursued within our framework.

2. Formulation

Consider a suspension of N F elastic fibers and N P rigid particles immersed in a Newtonian fluid which is either confined 
by an outer boundary �0 or which fills free space. The effect of thermal fluctuations on the fibers and other immersed 
bodies are neglected throughout this work. In the context of intracellular assemblies, the confining boundary represents a 
cell wall, and the fluid filling the cell is the cytoplasm that envelopes the assembly of the microscopic filaments, nuclear 
complexes, and other organelles. A schematic is shown in Fig. 1. The ratio of inertial to viscous forces is the Reynolds 
number, Re = ρLu/μ, where ρ and μ are the cytoplasmic density and viscosity, respectively, L is the characteristic length 
of the cell, and u is an average velocity magnitude. For cellular flows, due to the high viscosity of cytoplasm [41,110] and 
the small length-scale of the cell, Re � 1 and so inertial effects can be safely neglected. Hence, the flow of cytoplasm is 
described by the incompressible Stokes equation

−μ�u(x) + ∇p(x) = 0 and ∇ · u(x) = 0 for x ∈ � ⊂ R
3, (1)

where � denotes the domain occupied by the fluid. Letting �0 denote the boundary of the domain and � denote the 
surface of the filaments and other particles immersed in the fluid, the governing equations are augmented with the no-slip 
boundary condition on the surface of these bodies

u(x) = 0 for x ∈ �0, (2)

u(X) = X t for X ∈ �. (3)

Throughout this paper, we use lowercase letters to denote Eulerian variables, e.g. x, and uppercase letters to denote La-
grangian variables, e.g. X . Partial differentiation with respect to a variable is denoted by a subscript, e.g. X t := ∂ X

∂t . Thus, 
X t above is the material surface velocity. We denote the fiber centerline positions by γm with m = 1, . . . , N F , and particle 
surfaces by �n with n = 1, . . . , N P . P is the union of all the immersed particle surfaces: P =⋃N P �n .
n=1
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Using the fundamental solutions of the free-space Stokes equation, Eq. (1), the fluid flow can be directly related to 
the dynamics of immersed and bounding surfaces through a boundary integral formulation. In particular, the solution of 
the Stokes boundary value problem can be reformulated as solving a system of singular integro-differential equations on 
all immersed and bounding surfaces [81,82], which only requires the discretization of two-dimensional surfaces and one 
dimensional fibers instead of the whole volume of fluid.

The Oseen (Stokeslet) tensor G, the Stresslet tensor T, and the Rotlet (Couplet) tensor R, are fundamental solutions of 
the Stokes equation, and are given by

G(r) = 1

8πμ

I + r̂r̂

|r| , r̂ := r

|r| , (4)

T(r) = − 3

4πμ

r̂r̂r̂

|r|2 , (5)

R(r) · L = 1

2
∇ × (G · L) = 1

8πμ

L × r̂

|r|2 , for any vector L. (6)

In particular, the solution of Eqs. (1)–(3) is expressed as a convolution of a vector density with the Stokeslet and/or Stresslet 
tensors [82]. Therefore, we require convolutions of these tensors along fibers and surfaces. In particular, for a fiber centerline 
γ and a surface S (periphery or an immersed particle), we define

Gγ [ f ](x) :=
∫
γ

dsy G(x − y) · f (y), (7)

TS [q](x) :=
∫
S

dS y n(y) · T(x − y) ·q(y), (8)

where n in Eq. (8) denotes the outward normal to the surface S , and f and q are appropriately defined vector densities. 
For x ∈ S , the integral in Eq. (8) is interpreted in the principal value sense. Note that the integral contribution in Eq. (7) is 
divergent if x ∈ γ .

It is convenient to represent the fluid velocity as the superposition of velocities arising from integral contributions from 
each surface (periphery and immersed particles) and those from fiber centerlines:

u(x) = u P (x) + uF (x) + u�0(x) with u P (x) =
N P∑

n=1

u P
n (x), uF (x) =

N F∑
m=1

uF
m(x), (9)

where we have further decomposed the N P (N F ) immersed particles’ (fibers’) velocity contribution, u P (uF ), into those 
from each individual immersed particle (fiber) with contribution u P

n (uF
m). It is also useful to define a “complementary” 

velocity field: for example, by ū�0 we mean all the velocity contributions other than those from the periphery surface �0, 
that is, ū�0 = u − u�0 and similarly for ū P

n and ūF
m .

We first outline the boundary integral formulation and flow contributions arising from the bounding surface and im-
mersed rigid particles, based on the approach developed by Power and Miranda [80]. We then present a slender body 
formulation for the contributions of the fibers [48,44,102]. We proceed by outlining the mechanics of elastic fibers, mi-
crotubule (de)polymerization kinetics, and boundary conditions for fibers and particles. We conclude this section with a 
summary of the formulation.

2.1. The contribution from the periphery �0

The fluid flow in the interior of the periphery can be written as a double-layer boundary integral over �0 with an 
unknown vector density q0 [80]:

u�0(x) = T�0 [q0](x) +N�0 [q0](x), where (10)

N�0 [q0](x) =
∫
�0

dS y [n(x)n(y)] ·q0(y), (11)

and T�0 is defined in Eq. (8). Taking the limit of Eq. (10) as x → �0 and using the boundary condition, Eq. (2), generates a 
Fredholm integral equation of the second kind for the unknown density q0

−1

2
q0 + T�0 [q0](x) +N�0 [q0](x) = −ū�0(x). (12)

The operator N�0 is used to complete the rank of the operator T�0 [46,116] so that Eq. (12) is invertible. Eq. (12) defines a 
density for the backflow from the periphery that offsets the complementary flow on �0 due to immersed objects.
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2.2. The contribution from rigid immersed particles

Next, we consider the flow generated by the motion of rigid immersed bodies, each moving under an externally imposed 
force F ext

n and torque Lext
n and background flow ū P

n . Let U P
n and �P

n be the particle’s unknown translational and angular 
velocities, respectively. The external forces and torques are generally determined by force balance amongst the fibers and 
particles but here we assume they are known. The mobility problem for the nth particle can be written as

u P
n (x) = T�n [qn](x) + G(x − X P

n ) · F ext
n + R(x − X P

n ) · Lext
n , (13)

where T�n is defined in Eq. (8), X P
n is the nth particle center-of-mass, and G and R are the Stokeslet and Rotlet tensors 

defined in Eqs. (4) and (6) respectively. The Stokeslet and Rotlet terms in Eq. (13) are added to account for the net force 
and torque on the immersed particle. Once again, taking the limit x → x′ ∈ �n , and using that the particle is moving as a 
rigid body, Eq. (13) can be written as

U P
n + �P

n × (x′ − X P
n ) − ū P

n (x′) = −1

2
qn(x′) + T�n [qn](x′) + G(x′ − X P

n ) · F ext
n + R(x′ − X P

n ) · Lext
n . (14)

Since the double layer part of the integral equation, −qn(x′)/2 +T�n [qn](x), has six null functions associated with rigid body 
motion (three translational, and three rotational degrees of freedom), the resulting system of equations is underdetermined. 
To complete the formulation, we express the unknown translational and rotational velocities as natural inner products of 
the unknown densities of the double layer potentials, qn(x), with the null functions [80,46]. This results in six constraint 
equations

1

|�n|
∫
�n

dS y qn(y) = U P
n , (15)

1

|�n|
∫
�n

dS y (y − X P
n ) × qn(y) = �P

n . (16)

where |�n| denotes the surface area of �n . The formulation is now complete and gives a unique solution for qn(x). There 
are N P sets of such integral equations, one for each immersed body. In summary, the Stokeslet and Rotlet terms in Eq. (13)
are introduced to remove the rank deficiency of the double-layer integral formulation and to account for the net force and 
torque on the immersed particle, while the constraints, Eqs. (15) and (16), are added to make the system fully determined.

2.3. Fiber contributions to the flow

Consider a single fiber whose centerline is given by X(s, t) where s ∈ [0, L] (L is fiber length), moving in a background 
(complementary) velocity field ūF . In the biological setting where the fiber is a microtubule, the length L is a function of 
time due to its polymerization/depolymerization kinetics. In that setting, (de)polymerization typically takes place at s = L(t)
(at the plus-end of the fiber); hence s = 0 labels the minus-end, which is stable and has no polymerization/depolymerization 
reaction. For clarity in this section, we consider a fixed length L. We assume a circular fiber cross-section with radius 
a(s) and that ε = a(L/2)/L � 1. Then slender body theory uses a matched asymptotic procedure to relate the force per 
unit length, f (s, t), that the fiber exerts upon the fluid, to the fiber centerline velocity, V (s, t), through a distribution of 
Stokeslets along the fiber centerline [48,44,31].

Götz [31] in particular showed that the velocity induced by this slender fiber at a distal location x is given by

uF (x) = G[ f ](x) + ε2

2
W[ f ](x), where (17)

W[ f ](x) = 1

8πμ

L∫
0

ds′ I − 3r̂r̂

|r|3 · f (s′), (18)

The singular integrand in W is known as the Stokes doublet. In our biological simulations, ε ∼ O
(
10−3–10−2

)
, and hence 

the second term in Eq. (17) is nearly always negligible except when in the very close proximity to other structures. We have 
mostly avoided such situations in the applications presented here, and we omit this term in the evaluation of velocity for 
other particles or fibers.

To leading orders in ε , the self-induced motion of the fiber itself is given by

V (s) − ūF (s) = (M · f )(s) +K[ f ](s), (19)

M · f = 1 [
− ln(ε2e) (I + X s X s) + 2(I − X s X s)

]
· f , (20)
8πμ
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K[ f ](s) =
L∫

0

ds′
[

G
(

X(s) − X(s′)
) · f (s′) − 1

8πμ|s − s′| [I + X s(s)X s(s)] · f (s)

]
, (21)

where X s is the unit tangent vector to the fiber. The operator K is a so-called finite part integral arising from the matching 
procedure and makes an O (1) contribution to the fiber velocity. One typical approximation is to neglect K in comparison 
with M, using its dominant contribution which is proportional to ln(ε2). This is termed the local slender body formulation. 
For completeness (and asymptotic consistency) we keep the non-local self interaction term K. However, we do note that in 
our particular studies the M · f and ūF terms are dominant and this nonlocal term has a negligible effect on the dynamics.

As discussed in Tornberg and Shelley [102], Eq. (21) is not well-suited for numerical computation and requires regular-
ization to achieve stability and to maintain solvability. In the same manner as Tornberg and Shelley [102] we introduce a 
regularizing parameter δ to K:

Kδ[ f ](s) =
L∫

0

ds′
[

|r|√|r|2 + δ2
G
(

X(s) − X(s′)
) · f (s′) − I + X s(s)X s(s)

8πμ
√|s − s′|2 + δ2

· f (s)

]
. (22)

In the formulation of Tornberg and Shelley [102] the regularization parameter is a function of s [102, Equation 16], resulting 
in the asymptotic accuracy of O

(
δ2 ln δ

)
. In our formulation we take δ as a constant. In Section 3.5, we investigate the effect 

different choices of δ have on the overall accuracy and demonstrate that this formulation gives the asymptotic accuracy of 
O (δ). We reiterate our finding that the nonlocal term has negligible effect in our simulations composed of large number 
of fibers. Also, we note that the asymptotic accuracy of O

(
δ2 ln δ

)
that was obtained in Tornberg and Shelley [102] is only 

applicable to fibers with a quadratic variation of radius with respect to length ([102] assumes r = 4s(1 − s)r(L/2)/L2). In 
cytoskeletal fibers such as microtubules, however, the geometry is approximated more closely by a curved cylinder with 
fixed radius along its length. Thus, choosing δ in a similar fashion to Tornberg and Shelley [102] will not result in the same 
asymptotic accuracy of O

(
δ2 ln δ

)
.

Equation (19) relates the fiber velocity to the fiber forces acting upon the fluid. Since inertial effects are negligible in the 
Stokes regime, the sum of all forces at any point along the fiber is identically zero. Thus, the hydrodynamic force applied 
from the fiber to the fluid, f , balances internally generated forces f I , arising for instance from elastic deformations of the 
fibers, and external forces applied to the fiber, f E , say by molecular motors carrying payloads, or by gravitational body 
forces. That is,

f = f I + f E . (23)

The internal elastic forces are related to fiber configurations through appropriate constitutive relations, and here we choose 
to use the Euler–Bernoulli beam theory for elastic rods. The form of f E is highly dependent on the particular phenomena 
being modeled, and one example concerning the positioning of the mitotic spindle during cell division is discussed in 
Section 4.2.

2.4. Mechanics of elastic fibers

For high-aspect-ratio fibers, it is appropriate to use a generalized form of Euler–Bernoulli beam theory for elastic rods, 
where the torque L and bending force F B are given by

L = −E X ss × X s, (24)

F B = −E X sss, (25)

where E is the flexural modulus of the fiber. Twist elasticity is neglected here. Twist elasticity only becomes relevant when 
a net torque is applied in the direction of the microtubules/fibers, which only occurs when active forces have a component 
in the angular direction of the cylindrical fibers [30,55]. Since the majority of motor proteins, and those studied here, are 
not known to apply such forces, we have neglected twist elasticity. The local inextensibility constraint is satisfied by the 
determination of a tensile force, T X s , that acts along the tangent direction of the fiber. Its magnitude T is computed as a 
Lagrange multiplier [102]. Consequently, the total elastic force and elastic force per unit length applied to the fluid are

F I = F B + T X s = −E X sss + T X s, (26)

f I = F I
s = −E X ssss + (T X s)s. (27)

Imposing the local inextensibility constraint, i.e., s is a material parameter and independent of t , implies that X t(s, t) = V . 
Differentiating the identity X s · X s = 1 with respect to time generates the auxiliary constraint:

X ts · X s = V s · X s = 0. (28)
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2.5. Microtubule (de)polymerization kinetics

One major factor that allows the cytoskeleton to reprogram itself for different functionalities is that both actin filaments 
and microtubules are highly dynamic structures that continuously nucleate, polymerize and depolymerize. It is essential 
to include these effects in our biophysical simulations. The time-scales of (de)polymerization reactions are generally much 
shorter than those of cytoskeletal rearrangements. As an example, the lifetime of microtubules in a mitotic spindle is in the 
order of a minute, while the entire mitotic spindle can be maintained stably for hours [111]. One approach to simulating 
(de)polymerization processes is to discretely (remove) add segments of the filaments in time [70]. For the problems we aim 
to solve, this approach results in severe limitation of the maximum time-step needed for stability, and difficulty in enforcing 
boundary conditions.

To overcome these difficulties, we take an alternative route and reparametrize Eq. (19) in terms of a dimensionless 
parameter α(s, t) = 2s/L(t) − 1 and write X(α, t) ≡ X(s(α), t). This gives αs = 2/L and (·)s = 2(·)α/L. The chain-rule then 
gives

∂ X(α, t)

∂t
= V + αt Xα = V − (α + 1)L̇

L
Xα, (29)

where L̇ is the rate of (de)polymerization. Equation (28) for tension can easily be rewritten with respect to α by using the 
chain rule

X tα · Xα = 0, (30)

which, because of linear scaling between the parameter α and s, retains its original form.
Note that this particular choice of linear mapping between s and α gives

(α + 1)L̇

L
Xα

∣∣∣∣
s=0

= 0 and
(α + 1)L̇

L
Xα

∣∣∣∣
s=L

= 2L̇

L
Xα = L̇ X s. (31)

In other words, it is assumed that the fiber does not grow from the minus-end at s = 0 (α = −1), and only grows by 
continuous addition of monomers to the plus-end at s = L (α = 1). The underlying reason for this choice is microtubules 
are polar filaments that typically only (de)polymerize from their plus-end (s = L), while their minus-end (s = 0) is stable. 
Nonetheless, other forms of growth along the fiber, say from both ends, can easily be implemented by modifying the linear 
relationship between s and α, such that it reflects the known kinetics at the end-points of the fiber.

Note also that in the presence of polymerization, α is not a material parameter. Intuitively, incorporating Eq. (29) into 
Eq. (19) ensures that only moving a material point with respect to the background fluid flow would result in an induced 
flow and the act of adding and subtracting material elements to the ends of the fiber through the polymerization reaction 
does not result in any flow. Note that the physics would be different if the polymerization occurred by opening space 
and adding monomers in between the two ends, which requires force and does produce a net flow. This condition was 
considered by Shelley and Ueda [93] in their simulations of closed growing filaments.

2.6. Boundary conditions

The evolution equations, Eq. (19), are fourth-order in s for X , while Eq. (28) is second-order in s for T [102]. Generally 
the boundary conditions for tension are obtained by imposing the inextensibility constraint upon the boundary conditions 
for X . Here we discuss two types of boundary conditions that commonly occur in our modeling of cellular assemblies.

(i) Prescribed external force F ext and torque Lext on one, or both ends of the fiber. Taking s = L as an example, then using 
Euler–Bernoulli theory we have the boundary conditions:

F ext = F I (s = L) = (−E X sss + T X s)|s=L , (32)

Lext = L(s = L) = E(X ss × X s)|s=L . (33)

Similar expressions would hold at s = 0 by changing the sign of the right-hand-side. This provides two vector boundary 
conditions at s = L. The boundary condition for tension is obtained by taking the inner product of Eq. (32) with X s

T |s=L = F ext · X s|s=L + 1

E

∣∣Lext
∣∣2 , (34)

which uses Eq. (33) after noting that X s · X sss = −|X ss|2 = −|X s × X ss|2.
When a fiber end is “free”, that is no force or torque is applied to it, we then have

X ss|s=L = 0, X sss|s=L = 0, T |s=L = 0. (35)
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(ii) Prescribed position and velocity when a fiber is attached to a rigid body. Taking s = 0 as the attachment point we 
have:

∂ X

∂t

∣∣∣∣
s=0

= U P + �P × ( X |s=0 − X P ), (36)

where U P and �P are the translational and angular velocities of the body and X P is its center of mass. If the fibers 
are clamped at the attachment point, the tangent vector there would rotate with the body giving

∂

∂t

(
X s
∣∣
s=0

)
= �P × X s

∣∣
s=0. (37)

If the fiber is hinged and free to change orientation at its point of attachment, the torque free condition X ss = 0 is 
enforced at the attached end and the exerted torque to the particle from the fiber is set to zero (L in Eq. (33)).
The boundary condition for tension is obtained by taking the inner product of Eq. (36) with X s|s=0 and using Eq. (19), 
to find(

U P + �P × (X − X P ) − ūF
)

· X s = − ln(ε2e)

4πμ

(
Ts − E X ssss · X s + f E · X s

)
+Kδ[ f ](s) · X s. (38)

Finally, a fiber attached to a body applies a net force and torque to it, so that

F ext
body = −F |s=0, (39)

Lext
body = −

(
L|s=0 + ( X |s=0 − X P ) × F |s=0

)
. (40)

If there is more than one fiber attached to the body, then the right-hand-side of these equations becomes a sum over 
fiber-end forces and torques.

2.7. Formulation summary

For ease of notation, we summarize the formulation in the context of the biophysical problems we examine, and consider 
only one immersed rigid body (i.e., N P = 1 with surface P ) and many fibers all attached at their minus-ends (s = 0) to 
that body. The primary unknowns of the system are the double-layer densities q0 and q1 on the periphery and the rigid 
immersed body respectively, the translational and angular velocities of the immersed body, U P and �P , their associated 
external forces and torques, F ext

body and Lext
body, and velocities V m and tensions Tm of the fibers (m = 1, . . . , N F ). Given proper 

constraints and boundary conditions, coupled Eqs. (12), (14), and (19) (repeated below) can be solved for these unknowns. 
For convenience in discussing our numerical formulation we summarize the principal equations in the form

Ue + U s + Ū = 0, (41)

where

Ue = −
⎛⎝ 0

U P + �P × (x′ − X P )

V m = ∂ Xm(α,t)
∂t + (α+1)L̇

L (Xm)α

⎞⎠ , (evolution velocities) (42)

U s =
⎛⎜⎝ − 1

2 q0(x) + T�0 [q0](x) +N�0 [q0](x)

− 1
2 q1(x′) + TP [q1](x′) + G · F ext + R · Lext

(M · f m)(α) +Kδ[ f m](α)

⎞⎟⎠ , (self-interaction) (43)

Ū =
⎛⎝ ū�0(x)

ū P (x′)
ūF

m(α)

⎞⎠ . (complementary flows) (44)

Here x ∈ �0, x′ ∈ P , and α ∈ [−1, 1] and the terms for fibers are repeated for m = 1, . . . , N F . The complementary velocities 
are given by

ū�0(x) = u P (x) +
N F∑

m=1

uF
m(x), (45)

ū P (x′) = u�0(x′) +
N F∑

uF
m(x′), (46)
m=1
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ūF
m(α) = u�0(Xm(α)) + u P (Xm(α)) +

N F∑
l=1
l �=m

uF
l (Xm(α)), (47)

where

u�0(x) = T�0 [q0](x), (48)

u P (x) = TP [q1](x) + G(x − X P ) · F ext + R(x − X P ) · Lext, (49)

uF
m(x) = Gm[ f m](x). (50)

For Eq. (41) to be a closed set of equations, this system requires 12N P constraints (here N P = 1) as well as a constitutive 
law relating the configuration of fibers to their elastic force. We chose the Euler–Bernoulli model subject to local inexten-
sibility constraint as the constitutive model. This choice in turn requires 14N F constraints for the fibers (four constraints 
for vector position and two constraints for scalar tension). 6N P constraints are furnished by Eqs. (15) and (16) and 6N P are 
furnished by the force and torque balance on the particles, namely, Eqs. (39) and (40):

1

|P |
∫
P

dS y q1(y) = U P , (51)

1

|P |
∫
P

dS y (y − X P ) × q1(y) = �P , (52)

f I
m = −E(Xm)ssss + (Tm(Xm)s)s, (53)

(Xm)tα · (Xm)α = 0, (54)

F ext
body = −

N∑
m=1

F ext
m , (55)

Lext
body = −

N∑
m=1

(
Lext

m + ( Xm|s=0 − X P ) × F ext
m

)
. (56)

The final 14N F constraints depend on the choice of boundary condition for the fibers and are chosen from items in Sec-
tion 2.6.

3. Numerical methods

Below we outline the numerical evolution of the dynamic equations presented in Section 2 for evolving the conformation 
and configuration of systems composed of flexible filaments, immersed rigid-bodies, and an outer boundary. We first discuss 
the spatial discretization of surfaces of the rigid-bodies and the outer boundary and evaluating the related integral equations 
on these surfaces. We then will present the spatial discretization of the centerline of the fibers in the α coordinate to 
evaluate the required high-order derivatives and integrals with respect to α. Next, we discuss our time discretization scheme 
that circumvents the numerical stiffness that arises from high-order spatial derivatives along fibers as well as the numerical 
stiffness induced by many-body hydrodynamic interactions in crowded suspensions. The resulting linear system of equations 
for an update is solved using a preconditioned Krylov subspace method in a fast multipole framework.

3.1. Spatial discretization

We solve the boundary integral equations numerically using the Nyström method [53]. On bodies, the integrals are 
approximated on piece-wise Gauss–Legendre quadrangular surface patches. We represent fiber centerline positions and 
tensions by Chebyshev expansions in α, and use this expansion to evaluate integrals or derivatives over centerlines.

3.1.1. Non-singular integrals over surfaces
Let S denote a representative surface, e.g. the periphery or that of any of the rigid particles. For x ∈ S let x(θ, φ): 

[0, π ] × [0, 2π) → R
3 be a generalized spherical coordinate representation of this surface. We use a uniform trapezoidal 

grid in the “polar” and “azimuthal” angles to quadrangulate the surface. We denote the number of quadrangles in this 
quadrangulation by N S . For more complex geometries, high-quality and robust algorithms [8] can be used to generate the 
quadrangular mesh. On each such quadrangle Q on S , we use a tensor-product Gauss–Legendre grid with N gl × Ngl points, 
typically 4 × 4, to approximate surface integrals:
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∫
S

dSx f (x) =
N S∑

n=1

Ngl∑
i=1

Ngl∑
j=1

νiν j f (ui, v j) J (ui, v j), (57)

where (ui, v j) are the tensor-product Gauss–Legendre nodes in the unit square, with the νi ’s as the corresponding weights, 
and J is the Jacobian of the map from the unit square to each quadrangle. The Jacobian J and other geometric properties, 
such as the normal vector, are computed separately in a preprocessing step and are inputs to our code. In the experiments 
reported in this paper, we use 800 points to discretize the periphery and 800 points to discretize each immersed rigid body.

3.1.2. Singular integrals over surfaces
When the evaluation point sits on the surface S , the double-layer operator given in Eq. (8) is singular and the integral 

is defined in the principal-value sense. Numerical evaluation of such integrals can be done through singularity subtraction 
[117,47]. For this, we use the identity TS [q(x)](x) = 1

2 q(x) for x ∈ S [81]. Thus singular integrals in Eqs. (12), (43), and (14)
can be rewritten as

−1

2
q(x) + TS [q](x) = TS [q − q(x)](x) =

∫
S

dS y n(y) ·T(x − y) · (q(y) − q(x)) (58)

which is then evaluated using Eq. (57), resulting in a second-order accurate scheme [47]. Since the quadrature operator in 
Eq. (57) is linear, one can precompute the correction terms for singularity subtraction. Letting w i(x) = TS [ei](x) denote the 
numerically evaluated double-layer integral with constant density ei , the singularity subtraction is then given by

TS [q − q(x)](x) = TS [q](x) −
3∑

i=1

qi(x)w i(x). (59)

For any density q(x), the first integral in the right-hand-side is passed to Eq. (57) and the result is corrected by the second 
term.

Note that while singularity subtraction makes the integrand bounded, derivatives of the integrand stay unbounded and 
so putatively high-order quadrature such as Eq. (57) may not exhibit high-order accuracy [2]. For more complex shapes, 
high order methods such as partitions of unity [12,116] can be used. In our numerical tests, singularity subtraction showed 
satisfactory results.

3.1.3. Fiber representation
We use a pseudo-spectral method to represent the fibers’ centerlines and to compute derivatives and integrals along 

them. We denote the centerline of a fiber by X(α) where α ∈ [−1, 1] and represent X in the Chebyshev basis

X(α) =
p∑

k=0

X̂k Tk(α), α ∈ [−1,1], (60)

where Tk denotes the kth-order Chebyshev polynomial of the first kind [9, Section A.2], αk = cos(kπ/p), k = 0, . . . , p, denote 
the collocation points in α and X = [X(α0), . . . , X(αp)] is the vector of coordinates at collocation points. The coefficients 
X̂ as well as the derivative Xα at the collocation points can be computed with spectral accuracy using the FFT [103]. The 
arclength of the centerline is given by s(α) = ∫ α

0 |Xα′ | dα′ and arclength derivative by X s = Xα/sα . At the beginning of a 
simulation, we parameterize each centerline so that the parameter α coincides with the definition given in Section 2.5, i.e., 
α = 2s/L −1. Differentiation of the Chebyshev expansion is performed exactly using recursive relations for the coefficients of 
derivatives [9, Eq. A.15]. We define Dα as the differentiation operator using Chebyshev series such that Xα = DαX. Similarly, 
we define Ds . In the experiments reported in this paper, we use between 11 to 51 collocation points on each fiber.

3.1.4. Integration over fiber centerlines
Since the collocation points are extrema of Chebyshev polynomials, smooth integrals are computed using Clenshaw–

Curtis quadrature weights [103], which gives spectral accuracy. For evaluation of integrals in Eq. (50) we use this smooth 
quadrature scheme. The integral for Kδ given in Eq. (22) is also smooth (see Section 3.5) and is evaluated using this quadra-
ture method.

3.1.5. Evaluation of nearly singular integrals
When the evaluation point is close to the periphery, to a rigid particle, or to a fiber, the integrals become nearly singular 

and care must be taken for their accurate evaluation. There are robust algorithms for high-order evaluation of nearly singular 
integrals in two dimensions [37,73,5], and the most interesting recent development is [52] that has possible extension to 
three dimensions. In three dimensions, the interpolation algorithms used by Ying et al. [116] for boundary integrals and 
similarly by Tornberg and Shelley [102] for fibers are best suited for our setting. Therefore, when evaluating near a surface, 
we apply the algorithm outlined in Ying et al. [116, Section 4], with the modification that we use singularity subtraction at 
the nearest boundary point to evaluate the on-surface integral. When evaluating near a fiber, we use the algorithm given in 
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Tornberg and Shelley [102, Section 3.3.3]. The essence of both of these algorithms is the high-order interpolation of velocity 
at targets points that reside in the near region using nodes in the far region for surfaces or fibers. The far region is defined 
based on the spatial grid sizes on surfaces and fibers.

3.2. Time discretization

Due to the presence of high-order spatial derivatives in the bending force, an explicit treatment of the evolution equation, 
Eq. (19), yields an essentially fourth-order stability constraint on the time-step size. To circumvent this, we use a variation of 
the implicit–explicit (IMEX) method [3,102], where Eq. (19) is linearized and the numerically stiff terms (e.g., bending force) 
are treated implicitly. The linearization is done by computing the geometric properties of surfaces and fibers’ centerlines 
(e.g., tangent vector, Jacobian, collocation points, etc.) explicitly and treating the forces and densities defined on them 
implicitly.

Combined with the spectral spatial discretization, we find that the implicit treatment of the bending and tensile forces 
removes the time-step constraint (see Table 2). In dilute suspensions, the hydrodynamic interactions of the particles and the 
fibers, i.e. ū P

n and ūF
m terms, can be treated explicitly without any strict constraint on the step size. However, as the volume 

fraction of fibers increase, explicit treatment of interaction imposes strict limits on the time-step [85]. Therefore, we treat 
the interaction of flow constituent implicitly as well (see Table 1).

We use the “+” superscript to mark the unknowns to be determined at the next time-step. The unmarked variables are 
calculated at the current time-step. Discretizing the evolution equations, Eq. (41), using the backward Euler method, we 
have

Ue + U s + Ū = R, (61a)

Ue = −
⎛⎝ 0

U P ,+ + �P ,+ × (x′ − X P )
X+

m−Xm
�t

⎞⎠ , (61b)

U s =
⎛⎜⎝ − 1

2 q+
0 (x) + T�0 [q+

0 ](x) +N�0 [q+
0 ](x)

− 1
2 q+

1 (x′) + TP [q+
1 ](x′) + G · F ext,+ + R · Lext,+

(M · f +
m)(α) +Kδ[ f +

m](α)

⎞⎟⎠ , (61c)

Ū =
⎛⎝ ū�0,+(x)

ū P ,+(x′)
ūF ,+

m (α)

⎞⎠ , (61d)

R =
⎛⎝ 0

0
(α+1)L̇

L (Xm)α

⎞⎠ . (61e)

Note that the complementary flow Ū is treated implicitly. It is evaluated using Eqs. (45), (46), and (47) given that

u�0,+(x) = T�0 [q+
0 ](x), (61f)

u P ,+(x) = TP [q+
1 ](x) + G(x − X P ) · F ext,+ + R(x − X P ) · Lext,+, (61g)

uF ,+
m (x) = Gm[ f +

m](x). (61h)

The force along the fiber is computed as

f +
m = −ED4

s X+
m + Ds

(
T +

m (Xm)s
)
, (61i)

where Ds is the spatial differentiation operator defined in Section 3.1.3. Discretization of the constraints gives us

1

|P |
∫
P

dS y q+
1 (y) = U P ,+, (61j)

1

|P |
∫
P

dS y (x′ − X P ) × q+
1 (y) = �P ,+, (61k)

(
Dα X+

m

) · (Xm)α = (Xm)α · (Xm)α, (61l)
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where the last equation is the inextensibility constraint, Eq. (30), where we substituted the time derivative with its backward 
Euler approximation. The force and torque balance for the rigid particle are

F ext,+
body = −

N∑
m=1

F ext,+
m , (61m)

Lext,+
body = −

N∑
m=1

(
Lext,+

m + (X − X P ) × F ext,+
m

)
. (61n)

The boundary conditions are treated implicitly as well and linearized if necessary. The position of the rigid particle and the 
length of each fiber are updated using X P ,+ = X P + �tU p and L(t+) = L(t ) + L̇(t )�t respectively.

3.3. Linear solver and preconditioner

The system of Eqs. (61a)–(61n) is solved iteratively using a preconditioned GMRES method [89]. For the fibers, we use 
the Jacobi block preconditioning scheme natural to the problem, where the self-interaction blocks are formed and inverted 
directly using Gaussian elimination. For immersed particles and the periphery, we use a Jacobi preconditioner considering 
only the diagonal elements of the self-interaction blocks. To be concrete, consider a system with one rigid particle and two 
fibers. The system of equations is schematically

A =

⎡⎢⎢⎢⎣
AP←P AP←F1 AP←F2 . . .

AF1←P AF1←F1 AF1←F2 . . .

AF2←P AF2←F1 AF2←F2 . . .
...

...
...

. . .

⎤⎥⎥⎥⎦ , u+ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝U P

�P

q1

⎞⎠
(

X1
T1

)
(

X2
T2

)
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

, b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝0
0
0

⎞⎠
(

a1
b1

)
(

a2
b2

)
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Au = b, (62)

where, for example, the matrix block AP←F1 denotes the discrete operator that maps the (candidate) position and tension 
of the first fiber to the disturbance velocity at collocation points of the particle. Other matrix blocks are defined similarly 
and are constructed using Eqs. (61a)–(61n). We use a preconditioner in the form

P =

⎡⎢⎢⎢⎣
diag(AP←P ) 0 0 . . .

0 AF1←F1 0 . . .

0 0 AF2←F2 . . .
...

...
...

. . .

⎤⎥⎥⎥⎦ , (63)

where diag(AP←P ) denotes the diagonal matrix constructed in turn by the diagonal entries of AP←P . The preconditioned 
system is then P−1Au = P−1b. As is demonstrated in Section 3.5, this preconditioning scheme, combined with the implicit 
treatment of the bending force and the implicit handling of hydrodynamic interactions, removes the stiffness due to both 
high-order derivatives and the fiber–fiber HIs.

3.4. Matrix–vector products, FMM, and parallelization

In solving the linear system for new positions, the complementary velocities, Eqs. (45), (46), and (47), are evaluated at 
a set of collocation points on the fibers and particles. The formulae for the complementary velocities involve convolution 
integrals along the fibers with the single-layer kernel Gm (m = 1, . . . , N F ) and over surface of the periphery and rigid 
particles with the double-layer kernel T�n (n = 0, . . . , Np). After discretization (as outlined in Section 3.1), this results in a 
(discrete) many-body interaction between the collocation points.

The direct evaluation of these terms has quadratic complexity with respect to the total number of collocation points, 
N = N S × N P + (p + 1)N F , on all surfaces and fibers. This makes simulations with a large number of points very expensive. 
The Fast Multipole Method (FMM) is used to reduce this complexity to O (N). In particular, we use a kernel-independent 
FMM code [58] for evaluation of complementary velocities, Eqs. (45), (46), and (47).

At each time step, the FMM code proceeds by adaptively subdividing the domain to a hierarchical octree until each leaf 
box includes at most a preset number of source and target points (this number is a parameter for the FMM). In kernel-
independent FMM, an equivalent density is associated with each octree box. These densities are computed hierarchically 
through upward and downward passes over the tree using the designated kernels. We pass the single- and double-layer 
kernels, Eqs. (7) and (8), to kernel-independent FMM to be used for tree traversal and equivalent density computation.
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The main step in our algorithm that requires parallel communication is the HI that is handled by FMM. Consequently, 
we expect our code to have similar parallel scaling behavior as FMM — similar to the work of one of the authors for vesicle 
suspensions [84]. This FMM code uses OpenMP and MPI and is highly optimized and scalable for distributed memory. To 
further speed up the computation, other pieces of our code are parallelized. To have good load balancing, we try to have 
similar number of collocation points in each processor. In our examples, the number collocation points on fibers dominates 
those on the periphery and rigid bodies (if present at all). Therefore, in the beginning of our simulations, the fibers are 
equally distributed among processors and this distribution is kept fixed over the simulation. For highly dynamic and very 
large simulations, over the course of simulation, one can redistribute fibers based on the FMM load balancing [84] to have 
more locality and to avoid excessive communication.

To compute the matrix–vector multiplication for the iterative solver, given the candidate unknown vector, the forces are 
initially computed locally. Afterwards, the FMM is called to compute the complementary flow. The local interactions are 
computed on local memories and added to the complementary flow and the result is returned to the iterative solver.

For the applications presented in Section 4 we typically use one or two computing nodes with sixteen to twenty proces-
sors per node. A number of problems related to cytoskeletons, however, are computationally much larger than the problems 
studied in this paper. For example the mitotic spindle structure in the cell division can contain up to one hundred thousand 
fibers. Simulating such structures demands a substantial increase in computational power and the number of processors. 
This is achievable within our platform and we are currently pursuing this direction.

3.5. Numerical tests

In this section, we explore the effectiveness of our numerical techniques. We demonstrate the speedup obtained using 
the preconditioning given by Eq. (63) in solving the linear system Eq. (62) using GMRES. We study the effectiveness of 
the time-stepping scheme in removing temporal stiffness. Finally, we demonstrate the spectral accuracy in spatial operators 
along fibers and explore the effect of regularization factor in Kδ .

As a test case, we consider a sphere of radius r that is enclosed by a larger sphere of radius 6r. N F fibers are clamped 
to the inner sphere, as shown in the schematic Fig. 4. A fixed external force F is applied to the inner sphere which drives 
the sphere-fiber assembly into motion.

The first row of Table 1 shows the average number of GMRES iterations per time-step — for solving Eq. (62), precon-
ditioned with Eq. (63) — given the number of fibers, N F . The number of iterations are reported after taking 500 steps in 
time using the maximum stable time-step, �t = �tmax, which is given in the second row of Table 1. Since the volume of 
the computational domain is fixed by the dimensions of the outer boundary, �0, the volume fraction of the fibers increases 
proportionally with the number of fibers. In this case, increasing the number of fibers reduces the average distance between 
fibers and causes more pronounced HIs between them. Because the matrix in Eq. (62) becomes less diagonally dominant 
(with increasing HIs) and we are not preconditioning the off-diagonal blocks, the number of iterations shows a mild increase 
with the number of fibers. The preconditioner can be improved for this case by including off-diagonal HIs and using fast 
direct solvers to invert such non-sparse matrices [16].

We also observe a mild decrease in stable time-step as the number of fibers (and volume fraction) is increased (second 
row). Nevertheless, the computational cost per unit of time measured as the number of global matrix–vector multiplies per 
unit time (third row) is very favorable in the our case compared to the mixed explicit and implicit treatments of tension 
and bending forces respectively as done in Tornberg and Shelley [102]. For example, in the case of 1024 fibers, the stable 
time-step for the scheme presented in Tornberg and Shelley [102] was found to be three orders of magnitude smaller 
than the implicit formulation used here. Nevertheless we still do see a roughly linear increase in the number of global 
matrix–vector products per unit time with increasing N F (third row).

In Table 2, we investigate the effect of the implicit treatment of high-order spatial derivatives on the stable time-step. 
As is shown in the table, increasing the number of points on the fiber has no tangible effect on the stable time-step. By 
treating both the bending and tensile forces implicitly, we have apparently removed the stability constraint due to having 
high-order derivatives in the computation of elastic forces.

Since the fibers’ positions and tensions are represented in the Chebyshev basis, they are expected to be spectrally accu-
rate with respect to the number of points on the fibers. We show this in the context of a sphere sedimenting in free space 
with 32 fibers of equal length L = 5r hinged to it. Fig. 2 shows the error in the sphere’s velocity after 100 time-steps with 
�t = 5 × 10−4τE , corresponding to sedimenting 1/4 of its radius, as a function of the number of points on fibers. We used 
a fine grid with 120 points as the reference to compute the error. As expected, the method does show spectral accuracy 
with respect to the spatial resolution.

Finally, we explore the effect on the overall dynamics of the regularization factor δ that appears in the formulation of 
the non-local self-interaction terms in Eq. (22). To do so, we use an identical simulation setup as the one used to study 
the spectral accuracy of the method to compute the transient velocity U N L S B of a sphere with N F = 32 fibers attached 
(hinged) to it as a function of time. In all simulations, we march 5 × 104 steps in time with 10−3τE . For different values 
of δ we compare the sphere’s transient velocity from non-local slender body theory (NLSB; Eq. 22) against the velocity 
from local slender body (LSB; dropping the term Kδ ), while still taking into account the many-body HIs. In Fig. 3 we plot ∣∣U N L S B(t)/U L S B(t) − 1

∣∣ versus the travel distance of the sphere, |z(t)|.
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Table 1
Average number of GMRES iterations and stable time-step vs. number of fibers. The average number of GMRES 
iterations and the largest stable time-step for the mobility of a sphere with attached fibers in confined geometry, 
where τ E = −8πηL4/ln(ε2e) is the elastic relaxation time of fibers with L = 2r. A sphere with radius r is en-
closed by another sphere of radius 6r. The fibers are clamped to the inner sphere, where an external force F is 
exerted on the structure (see Fig. 4 for a schematic) and the velocity of the inner sphere is computed. The length 
of the fibers is 2r and the force is 1/32 of the elastic force scale F elastic ∝ E/L2 resulting in small fiber deforma-
tions. The interactions between the fibers, the sphere, and the outer boundary are treated implicitly. There are 31
Chebyshev points per fiber. The GMRES tolerance for relative residual was set to 10−5.

Number of fibers N F 32 128 512 2048

Average number of GMRES iterations 3 5 9 16
103 × �tmax/τ E 1.0 1.3 0.5 0.25
Number of GMRES Iterations/�tmax 3 3.8 18 64

Table 2
Stable time-step vs. number of points on fibers. The setup is identical to that of Table 1 but 
with fixed number of fibers N F = 512 and changing number of points per fiber. For an explicit 
method, the bending stiffness imposes a fourth order time-step limit as number of points per 
fiber is increased. The implicit treatment of the bending force removes such constraint.

Chebyshev order 11 21 31 41

103 × �tmax/τ E 0.5 0.45 0.5 0.45

Fig. 2. Spectral accuracy of spatial calculation. A sedimenting sphere with 32 hinged fibers is considered. The abscissa is the number of points per fiber and 
the ordinate is the error in the velocity of the sphere. As the reference, we used a high-resolution case with 120 points per fiber. The relative errors are 
measured after taking 100 steps in time with �t = 5 × 10−4τE , corresponding to sedimentation of 1/4 of sphere’s radius.

As it is shown, the relative difference between the NLSB and LSB is at most 1.4%, indicating that including the non-local 
self interaction terms has very little effect on the dynamics of the fibers and the attached bodies. The inset plot of Fig. 3
shows a closeup of the figure around 4.5r traveled distance. As it can be seen, the difference between the computed 
velocities at different values of δ decreases (almost linearly) with decreasing δ, which indicates that numerically evaluated 
Kδ[ f ] is a smooth function of δ. For the two smallest values of δ0 = 5 × 10−3 and δ1 = 10−2 the relative difference in the 
computed values are of O(10−5). In contrast to Tornberg and Shelley [102] where specialized quadratures were used to 
evaluate this integral, we find that our spectral integration is sufficient for computing Kδ [ f ] accurately.

4. Computational experiments

In this section we consider three representative experiments. First, we verify the consistency of our numerical framework 
by studying the effect of confinement on the mobility of a “microtubule aster” [71,107]. We consider an aster located in 
the center of a spherical shell. In this simple geometry, in certain parameter ranges, the aster can be modeled as a porous 
medium and the hydrodynamic drag coefficients on the body can be computed analytically using the Brinkman model. 
We show that our numerical results are in excellent agreement with this model. We further demonstrate that the porous 
medium model has considerable shortcomings as it fails to capture the elastic behavior of the complex when the timescale 
of imposed force is shorter than the elastic relaxation time of the fibers.

As a primary biophysical application of our framework, we study the effect of confinement on the dynamics of “pronu-
clear migration” [95]. The precise and timely positioning of the pronuclear complex, and the ensuing mitotic spindle, within 
cells is necessary for the proper development of eukaryotic organisms [62,95,19]. To gain further insight into the mechanics 
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Fig. 3. Effect of the regularization factor in Kδ . The relative difference between the computed velocity of a sphere with radius r and 32 attached fibers under 
a given force using local and non-local slender body theories at different values of the regularization parameter δ. The maximum relative error associated 
with local slender body is 1.4%. The inset figure is a closeup of the same figure which shows that the difference between the computed transient velocities 
at different δ decreases with δ. For the two smallest values of δ, this difference is of O (

10−5
)

which is within the same range as the residual error for 
GMRES. The setup of this experiment is identical to that of Fig. 2, and we take 5 × 104 steps in time with �t = 10−3τE . The abscissa is the location of the 
center of the sphere over time (relative to the sphere radius) and the ordinate is the relative difference between two velocity models.

Table 3
The biophysical parameters used in our Simulation. These values are taken from Kimura and 
Onami [49, Table 1]. The references related to each measurement is also given in that article.

Parameter description Values used in simulations

MT growth velocity (V 0
g ) 0.12 μm s−1

MT shrinkage velocity (V s) 0.288 μm s−1

MT rate of catastrophe ( f 0
cat ) 0.014 s−1

MT rate of rescue ( fres) 0.014 s−1

MT bending modulus (E) 10 pN m2

MT’s stall force for polymerization reaction (F P
S ) 4.4 pN

Cytoplasmic dynein’s stall force (F stall) 1 pN
Viscosity of cytoplasm (η) 1 Pa s
Longest axis of the cell (2 × acor ) 50 μm
Radius of pronuclear complex (aP NC ) 5 μm

of pronuclear positioning, we consider models of positioning for cells of varying geometries. We study the time-scale re-
quired for proper positioning and show it depends sensitively on the choice of model and cell geometry. We also investigate 
the effect of varying model parameters on the dynamics of migration. These results demonstrate the potential of in silico
experimentation to study cases not easily amenable to in vitro or ex vivo experiment, and to complement theoretical and 
experimental understanding of cellular processes.

To show the more general applicability of our framework, we conclude by studying a cloud of sedimenting fibers. Our 
simulations reveal that the sedimenting cloud has gross characteristics similar to those of a sedimenting cloud of particles 
in either the Stokesian or inertial regimes, but with strong internal alignment dynamics.

In all three studies, microtubule (MT) filaments are our model system for semi-flexible fibers. The biophysical and me-
chanical parameters related to microtubules and their associated molecular motors that are used in simulating these three 
conditions are listed in Table 3. These values are reproduced from Kimura and Onami [49, Table 1]. The references related 
to these measurements are also provided in [49].

4.1. The effect of confinement on the hydrodynamic mobility of microtubule asters

One of the main structural elements of the cytoskeleton is the microtubule (MT) filament. Some MT assemblies are 
formed by MTs nucleating from microtubule organizing centers (MTOCs) and radially growing out into the cytoplasm. In some 
organisms, these astral structures can grow to be as large as the outer boundary of the cell. The confining geometry of the 
cell may increase the force required to move the aster and any attached structures. To study the effects of confinement on 
aster mobility, we construct a very simple model of it by modeling the MTOC as a solid sphere where MTs of equal length 
are radially clamped to it.

Fig. 4 shows a schematic of this setup, where the entire structure is centered inside a spherical cell with rc = 6rm where 
rm is the radius of the MTOC and rc is the radius of the cell. We apply an external force to the aster and compute the 
resulting velocity. The ratio of the external force to this velocity is the hydrodynamic drag coefficient at this location.

Aside from direct numerical simulation of the complex, one could attempt to model the astral structure as a porous 
medium and compute the drag coefficient as a function of its porosity. To verify the physical consistency of our numerical 
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Fig. 4. Schematic of microtubules aster in confinement. A schematic presentation of the simulation setup for studying the effect of the cell boundary on 
the mobility of the microtubule asters. rm denotes the radius of the MTOC (the blue sphere), rc = 6rm denotes the cell radius, L is the microtubule length, 
rs = rm + L is the radius of the astral structure, and F is an imposed force. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

framework, we give an analytical calculation of the drag coefficient by representing the attached fibers as a porous medium 
where the flow inside the porous domain is modeled using Brinkman equation [10]:

μ∇2u − ∇p = μ

κ

(
u − U body

)
and ∇ · u = 0, (64)

where u and U body are the velocities of the fluid and the porous domain, respectively. The term −(μ/κ)(u − U body) is the 
frictional force applied by the porous media on the fluid due to their relative motion, and κ is the permeability coefficient 
that is generally a function of the orientation, aspect ratio, and volume fraction of the fibrous region. It is important to note 
that the underlying assumption of the Brinkman equation is that the entire porous domain moves as a solid body which 
in our case is the velocity of the aster. This assumption is not valid in many flow regimes, for example, in the limit of 
having large enough external force, or velocity fields that deform the MTs causing the MTs to locally have different velocity 
than the MTOC. If, however, this constraint is met, previous comparisons of simulations based on slender-body theory and 
boundary integral calculations with Brinkman theory confirm that this model gives an excellent representation of fibrous 
networks over a wide range of volume fractions [40]. That said, given the geometric structure of an aster array of MTs, 
a more accurate description would use a spatially dependent permeability coefficient. Here for simplicity we make the 
assumption that we can describe the porous shell through a single constant permeability.

A similar problem in this context has been worked out by Masliyah et al. [61] where they solved for the flow and the 
resulting drag coefficient of a sphere with a porous shell that is being pulled in an infinite fluid domain. Here we directly 
extend their results to a confined flow with a spherical outer boundary. The velocity field in the porous shell rm < r < rs
is modeled using the Brinkman equation, Eq. (64), while for rs < r < rc the Stokes equation governs the fluid motion. Flow 
incompressibility is applied in both regions. The boundary conditions for velocity at r = rm and r = rc are no-slip. On the 
interface of the porous and fluid, r = rs , the boundary conditions are continuity of fluid stress and velocity. For convenience 
we rewrite the equations in terms of ũ = u − U body, and represent the velocity in spherical coordinates, ũ = (ũr, ̃uθ , ̃uϕ). 
Since the inner sphere is located at the center, the flow is axisymmetric, i.e., ũϕ = 0 and ũ(r, θ) with θ ∈ [0, π ]. The 
boundary conditions in this situation simplify to:⎧⎪⎪⎨⎪⎪⎩

r = rm :ũB
r (rm, θ) = 0, ũB

θ (rm, θ) = 0,

r = rs : ũB
r (rs, θ) = ũ F

r (rs, θ), τ B
rθ (rs, θ) = τ F

rθ (rs, θ), pB(rs, θ) = pF (rs, θ),

r = rc : ũ F
r (rc, θ) = −Ubody cos θ, ũ F

θ (rc, θ) = Ubody sin θ,

(65)

where p and τrθ are the pressure and tangential component of the stress tensor, the B and F superscripts refer to the 
Brinkman and fluid domains, respectively, and the porous sphere moves in the ẑ direction, i.e., U body = Ubody ẑ. We solve for 
the flow using the Stokes axisymmetric stream function in spherical coordinates subject to the conditions given in Eq. (65). 
The detailed calculations and the resulting analytical expressions are given in Appendix A. The force on the porous sphere 
can be obtained by integrating the stress distribution over the sphere r = rs . In axisymmetric flows the total force can be 
expressed as [36]

F = 2πr2
s

π∫
0

dθ
[
τrr cos θ − τrθ sin θ

]
r=rs

sin θ. (66)

Having solved for the axisymmetric stream function, we can then analytically compute the drag coefficient (see Appendix A).
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Fig. 5. Normalized drag coefficients of a porous shell. The predicted drag coefficient based on modeling the porous shell with the Brinkman equation 
compared against the drag coefficient of the completely impermeable case κ → 0, computed using Eq. (67).

Fig. 6. Drag coefficient vs. number of MTs. The nondimensional drag coefficient as a function of the number of MTs with rm = 1, and rc = 6, and L/rm = 1, 2, 
and 3. The solid lines present the analytical calculations of the drag coefficient based on the Brinkman equation for the porous domain. For each line, the 
permeability coefficient used in the Brinkman equation is assumed to be inversely dependent on the number of fibers κ−1 = cN F , where the coefficient of 
proportionality c is computed through regression on the data.

As the number of MTs increases, the penetration length of the fluid into the porous layer is reduced due to hydrodynamic 
screening. In the limit of an infinite number of MTs (κ → 0) we expect the drag coefficient of the structure to approach 
the drag coefficient of a sphere with an effective hydrodynamic radius of rs . The drag coefficient of a sphere with radius rs

centered within a sphere of radius rc is given by [36]:

Cb = 6πηrs
4(1 − λ5)

4 − 9λ + 10λ3 − 9λ5 + 4λ6
, where λ = rs

rc
. (67)

In Fig. 5 we compare the predictions of the Brinkman model for a range of permeabilities from the highly permeable, 
κ = 100, to nearly impermeable, κ = 0.001, as rs is increased from 2 to 5 (recall that rm = 1 and rc = 6). The predicted drag 
coefficients from the Brinkman equation as κ → 0 correctly asymptotes to the limit of having a completely impermeable 
sphere with r = rs , given by Eq. (67).

Next we compare the computed drag coefficient from our direct numerical method against the predictions of the 
Brinkman equation. To ensure that the flow regime meets the requirements of the Brinkman model and the attached fibers 
and the aster move as a single body, we chose the external force, F = (1/32)E/L2 ẑ, small enough to guarantee that the 
MTs remain nearly straight and that their elastic relaxation time is much shorter than the time required to change the 
position of the aster more than 1% of its size. As a result, at any given point, the computed drag coefficient represents the 
instantaneous drag coefficient (if the fiber were assumed completely rigid) with good accuracy. The physical parameters 
including flexural modulus of fibers and fluid viscosity, are chosen from those given in Table 3, and all the lengths are made 
dimensionless with aP NC = 5 μm, i.e., L = 1 is equivalent to 5 μm. We use 800 points to discretize the periphery, 800 points 
to discretize the rigid spherical MTOC, and 31 points to discretize each MT. We use �t = 10−4 × τ E and take up to 3 × 104

time-steps.
Fig. 6 shows the computed drag coefficient from our simulation versus the number of the MTs for N F = 32 to 1568 for 

three different lengths of the MTs L = rm, 2rm, 3rm . The drag coefficient is non-dimensionalized by the value of the drag 
coefficient of an impermeable sphere with radius r = rs from Eq. (67). As expected, the drag coefficient increases with 
increasing number of fibers. For example, for rs = 2 the ratio of the drag coefficients at N F = 1568 to N F = 32 is 2.22. This 
ratio is 4.3 and 7.52 for rs = 3 and 4, respectively, which shows that the effect of confinement becomes more pronounced 
with the increase in fiber length, as they get closer to the periphery.
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Fig. 7. Viscoelastic behavior of the microtubule asters. (a) The instantaneous velocity of the microtubule aster under an oscillatory force with various 
frequencies. (b) The loss and elastic moduli and their ratio versus frequency computed from the results shown in (a).

The other important observation is that for a given number of fibers, the longer the length, the farther the drag is 
from its maximum value corresponding to κ → 0 in the theory and N F → ∞ in simulations — compare Ĉ = C/Cb =
0.86, 0.76, and 0.47 for L/rm = 1, 2, and 3 for N F = 1568. This is due to the fact that the effective volume fraction of the 
fibers decreases away from the MTOC as r−2 for a given number of attached MTs and therefore the average permeability of 
the porous domain increases with L.

The solid curves in Fig. 6 are the Brinkman predictions for the nondimensional drag coefficient Ĉ for different MT 
lengths, as N F is increased. These estimates are in very good agreement with the numerical results (open symbols). A single 
parameter is fit for each curve. Once the domain of the porous shell is set (i.e., rm,s are chosen), the permeability κ must be 
specified. To remove dependence upon the number of fibers N F we invoke the expected linear scaling of drag forces with 
volume fraction and take κ−1 = cN F . It is the parameter c that is determined to give the best fit of the Brinkman theory to 
the simulation results. The fit values of c reduce from 0.05 for L = 1, to 0.008 for L = 3. This shows that as the length of 
fibers are increased, the average permeability in the theory increases which is in line with our earlier observation based on 
numerical simulations.

The Brinkman approach to modeling the interactions of fibrous assemblies with the fluid has substantial limitations. We 
noted earlier that we are using a constant permeability approximation. Even more notable is that in the Brinkman equations, 
the response of the porous domain to the fluid is immediate, resulting in a purely viscous response. However, an aster (and 
many other fibrous structures) are composed of flexible fibers that deform in response to an external force. As a result, the 
response of the entire system can behave as a viscoelastic material on the time-scales relevant to many cellular processes.

To demonstrate viscoelastic behavior of our model aster and the limitations of Brinkman equation, we consider a 
setup that is identical to the previous problem except that the external force is now an oscillatory function of time, 
F (t) = F0 cos(ωt). We take L = 2rm , N F = 512, F0 = 10E/L2 and ω = aπτ−1

E . Here τE = − ln(ε2e)E/(8π L4η) is the elastic 
relaxation time of a single fiber with length L and flexural modulus E . For different values of a (0.32, 1.60, 8.00, 40.00, 
200.00) we study the response of the aster over many periods of oscillation.

Note that in the range of values of F0 and ω used in our simulations, the oscillation amplitude of the position of the 
aster is less than 1% of both its radius and the distance between the aster and the cortex. Thus, we can safely assume that 
variations of the drag coefficient with time are not due to the change in the configuration of the aster with respect to the 
cell boundary.

In Fig. 7(a) we plot the dimensionless velocity of the aster, U (t)/U0, against the dimensionless applied force, F (t)/F0, 
over a temporal period of oscillation (at long times) for different frequencies ω. The velocity is non-dimensionalized by the 
velocity U0 of the spherical core in the absence of MTs and under the same force. The Brinkman predictions are also shown. 
For the Brinkman equation the response is entirely viscous, and so the velocity is completely in phase with the applied force 
i.e., in the linear response regime U (t)/U0 = (C0/C) cos(ωt), where C0 and C are, respectively, the drag coefficient of the 
spherical core in the absence of fibers and the drag coefficient of the the MTOC and its associated astral MTs. Thus, U (t)/U0
versus F (t)/F0 gives a line with slope C0/C . However when fibers are flexible, their shape, and thus their resistance to the 
flow, evolves with time resulting in both a frequency-dependent drag and a delay in the response of the velocity of the 
aster with respect to the applied force, i.e., U (t)/U0 = (C0/C) cos(ωt + ζ ). In this definition, ζ = 0 and ζ = π/2 correspond 
to purely viscous and elastic behaviors, respectively. This change in behavior is visualized by the tilted ellipses in the plots 
of U (t)/U0 versus F (t)/F0. The area within each ellipse is proportional to the stored elastic energy. If ζ = 0 the ellipse 
reduces to a line (zero stored elastic energy), which is the Brinkman result. Our simulations at the two lowest frequencies 
approach this limit. In this limit, the time-scale of deformation of fibers becomes shorter than the time-scale of oscillation, 
ω−1. As a result, the dynamics are essentially quasi-static and the behavior is predominantly viscous. As the frequency is 
increased, these two time-scales become comparable, and the dynamics become viscoelastic and deviates significantly from 
the Brinkman predictions. For example, the velocity amplitude in simulation at the largest frequency is about 3.6 times 
larger than the value predicted by the Brinkman equation.
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Fig. 8. Schematics of the pronucleus complex and stages of PNC migration. (b)–(e) The important stages of the migration process in the first cell division 
of C. elegans embryo. (b) At t(−1) the egg is fertilized by the male pronucleus and the female pronucleus migrates towards the male pronucleus. (c) At t0

the PNC is formed in the posterior side of the cell. This stage is the starting point of our simulations. (d) Afterwards, from t1 to t2 the PNC migrates to the 
center of the cell, while the PNC rotates and the MTOC axis starts to align with the AP-axis. (e) Finally, at t3 the centering and rotation process of the PNC 
is completed corresponding to the final stage of our simulations. (For interpretation of the colors in this figure, the reader is referred to the web version of 
this article.)

The dimensionless elastic and loss moduli, G ′ and G ′′ , respectively, can be computed as G ′(ω) = (C/C0)ω sin ζ and 
G ′′(ω) = (C/C0)ω cos ζ . The computed values of G ′(ω), G ′′(ω), and their ratio are shown Fig. 7(b). The minimum in G ′′/G ′
gives the characteristic frequency ω∗ corresponding to the slowest relaxation time τ ∗ = 1/ω∗ of the aster. For a single fiber 
ω∗ = τ−1

E . For the aster, the critical frequency is roughly ω∗ = 8πτ−1
E , that is, the aster relaxation time is 8π ≈ 25 times 

smaller than that for an individual fiber. Thus, in addition to changing the drag on the aster, hydrodynamic interactions 
within the ensemble also give large changes in its relaxation dynamics. To summarize, this simple example clearly shows 
the viscoelastic nature of a microtubule aster, and demonstrates the shortcomings of Brinkman equation in describing it.

4.2. Pronuclear positioning in complex geometries

The precise positioning of the pronuclear complex (PNC), and of the ensuing mitotic spindle, is indispensable for the 
proper development of eukaryotic organisms. Positioning of the spindle in the center of the cell produces equally sized 
daughter cells while asymmetric positioning leads to daughter cells of different sizes which is essential for producing cell 
diversity [62]. Positioning in organisms with MTOCs is carried out by astral MTs that nucleate from the MTOC and grow 
into the cytoplasm. Previous studies on such organisms have shown that the interaction of MTs with the cell cortex (the 
periphery) can be a key factor in defining the position and orientation of the mitotic spindle. For example, experiments 
in early stages of cell division in the C. elegans embryo have shown that when the cell cortex is deformed from its native 
elliptical shape to spherical, the mitotic spindle can fail to properly align with the anterior–posterior AP-axis of the cell [75]. 
Considering that cells evolve through a variety of shapes during development, it is important to identify the relationship 
between cell shape and spindle positioning.

To study this, Minc et al. [65] molded individual sea urchin eggs into microfabricated chambers of different geometries 
and so took the shape of the chamber. They analyzed the location and orientation of the nucleus and mitotic spindle 
throughout the first cell division and found that the nucleus moves to the center of the chamber and aligns along its longest 
direction. We demonstrate the applicability of our method in studying the effect of confinement on spindle positioning by 
taking a similar approach and numerically studying the positioning of a model PNC for shapes other than spheres and 
ellipsoids.

4.2.1. Stages and mechanisms of pronuclear positioning
We concentrate on positioning of the pronuclear complex in the single-cell C. elegans embryo. After fertilization and 

the introduction of the male pronucleus, the female pronucleus approaches and fuses with its male counterpart, which 
has two MTOCs and associated astral MT arrays. Together this ensemble forms the PNC and its motions are associated 
with its astral MTs. After centering and rotation of the PNC leading to the alignment of the axis between the MTOCs with 
the AP-axis (the two primary aspects of positioning), the mitotic spindle forms, chromosomes condense, chromatid pairs are 
formed, chromosomes are divided and move to opposite cell sides, and cell division proceeds [19,95,62]. Here we only study 
the positioning of the pronuclear complex prior to the formation of spindle. A schematic representation of the important 
structural elements involved in PNC positioning, and its important stages, are shown in Fig. 8.

The force driving PNC positioning is thought to be generated by one, or all, of three potential force-transduction mech-
anisms operating on astral MTs: cortical pushing, cytoplasmic pulling, or cortical pulling. In the cortical pushing mechanism, 
pushing forces are applied by MTs growing against the cell cortex [87]. In the cytoplasmic pulling mechanism, MTs are pulled 
by molecular motors located in the cytoplasm [49,51]. In both of these proposed mechanisms, the rotation of PNC and its 
alignment with the AP-axis is achieved due to the asymmetric ellipsoidal shape of the C. elegans embryo [94,69]. Finally, in 
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the cortical pulling mechanism, MTs are pulled by dynein motors attached to the cortex [32]. The activation of these motors 
is believed to be regulated by other protein complexes that are distributed asymmetrically throughout the cell boundary, 
and that because of this asymmetry the details of cell shape may not be crucial to achieving proper positioning [75].

In a concurrent work [69] using the framework presented here, we have studied the positioning of the PNC in the 
single-cell C. elegans embryo while focusing on the effect of hydrodynamic interaction and the generated cytoplasmic flows 
in these three mechanisms. We specifically show that each active mechanism produces qualitatively different cytoplasmic 
flows, and argue that flow measurement can be used as a diagnostic tool to identify the primary mechanism for pronuclear 
migration. For more details the reader is referred to [69]. Here, we instead consider PNC positioning under deformations of 
the cell shape.

4.2.2. Biophysical models
We consider simple instantiations of the cortical pushing and cytoplasmic pulling models. Both of these models are generic 

in the sense that they rely upon rather nonspecific elements of cellular physiology. The cortical pulling model, on the other 
hand, involves several biophysical elements that are specific to C. elegans [62]. Thus, to keep our study as general as 
possible with respect to the choice of the organism, we do not consider cortical pulling here. The general features of that 
model are discussed in Nazockdast et al. [69]. Below we briefly outline cortical pushing and cytoplasmic pulling models and 
their implementation within our numerical method. First we begin with a discussion of MT dynamics.

Microtubule polymerization kinetics. Microtubules are polar protein polymers that primarily grow and shrink from their 
so-called plus-end while the minus-end remains stable. The process of abrupt stochastic transitions between growth and 
shrinkage is termed dynamic instability [22]. The distribution of MT lengths is determined by their rates of growth V g and 
shrinkage V s , and their frequencies of catastrophe fcat (changing from growing to shrinking), and of rescue fr (changing 
from shrinking to growing). Previous in vitro measurements and theoretical studies show these rates change under mechan-
ical load [78,23,43]. We use an empirical relationship based on the in vitro measurements of Dogterom and Yurke [23] to 
relate the rate of MT growth to an applied compressional load on its plus-end:

V g = V 0
g exp

(
−7

3

F (L) · X s

F P
S

)
, (68)

where V 0
g is the growth rate under no compressive load, F P

S is the stall force for MT’s polymerization reaction and F (L) is 
the end-force of the MT. The values used in our simulation for these parameters are listed in Table 3.

The in vitro measurements of Janson et al. [43] suggest that the turnover time from growth to shrinkage, τcat = 1/ fcat , 
of MTs under compressive plus-end-loading is proportional to its growth velocity (itself modulated by the end-force), while 
other in vivo observations suggest that the turnover time of MTs touching cortex in C. elegans is 1 to 2 seconds [62]. We 
incorporate these two observations and model the rate of catastrophe as

fcat = max

(
f 0
cat

V 0
g

V g
,

1

τcat

)
, (69)

where f 0
cat is the rate of catastrophe under no compressive end-load and τcat is the turnover time. In all simulations 

presented here, unless specified otherwise, we chose τcat = 4 s.

The cortical pushing model. The movement of the PNC in the cortical pushing model is achieved by compressive forces being 
applied from the cortex to MTs growing against it. See the schematic of this model in Fig. 9(a). If these forces are not strong 
enough to stop the growth process altogether, then newly polymerized MT is pushed out from the wall at the polymerization 
rate, thus lengthening the MT. In turn, this lengthening either pushes the attached PNC away from the cortex, or it deforms 
the MT. A rough, but useful, estimate of the likelihood of the deformation of MTs upon reaching the cell boundary can 
be achieved by comparing the stall force for the growth reaction, F P

S = 4.4 pN [106], to the characteristic force required 
for buckling, Fb = π2 E/L2. In the single cell C. elegans embryo, the average MT length is roughly 10 μm, resulting in 
Fb/F S

P ≈ 0.20 implying that MT interactions with the cortex most likely result in buckling (or bending) rather than the stall 
of polymerization reaction. As a result, a larger compressive force is applied to the MTOC with shorter average length of 
anchored MTs, since they both buckle less easily and more directly apply force to the PNC, and are more numerous due 
to dynamic instability. This results in the PNC being pushed away from the side with shorter MTs, and migration towards 
the side with longer MTs. The combination of torque and force balance on the PNC eventually determines its position and 
alignment of the centrosomes with respect to the AP-axis [69].

In our simulations, we assume that the positions of the growing MTs remain fixed on the periphery once they make 
contact. We capture this assumption by applying a constraining spring force once an MT plus-end reaches within the critical 
distance �r = 0.5 μm from the periphery. The spring force,

F (L) = −K (X(L) − Xatt), (70)

is directed towards the attachment point Xatt and proportional to the distance from it. We set K = 10 pN (μm)−1. At 0.5 μm
of displacement, this choice of K results in 5 pN of force, which is bigger than the stall force for polymerization reaction 
(F P = 4.4 pN). Thus, the MTs will stop growing prior to reaching to the cell periphery.
S
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Fig. 9. Schematics of the biophysical models of PNC migration used in this study. (a) Cortical pushing model, where compressive forces are applied from the 
cortex to the MTs growing against it due to their polymerization (the forces are modeled as spring forces at the attachment point) (b) cytoplasmic pulling 
model, where the active force for movement is generated by cargo carrying cytoplasmic dynein motors. (For interpretation of the colors in this figure, the 
reader is referred to the web version of this article.)

We also assume that the attachment to the cortex is a hinged attachment, i.e. the net torque on the growing plus-end 
is zero. As a result, for growing MTs pushing on the cortex the force F ext is given by Eq. (70) and the net torque is zero. 
When the plus-ends are not at the cortex then the external force and torque on the plus-end are both zero. The minus-end 
of all MTs are clamped to the MTOC and the boundary conditions are prescribed by Eqs. (36), (37), and (38). The MTs apply 
a net force and torque to the PNC through their boundary conditions which is computed using Eqs. (55) and (56). Note that 
in this model there are no active forces from molecular motors on the MTs i.e. f E = 0.

In Nazockdast et al. [69] we use another variation of cortical pushing mechanism where the growing MTs can bend, 
grow, and slide along the outer boundary. We found that this variation, unlike the one considered here, does not properly 
align the PNC centrosomes along the AP-axis in physiologically reasonable times, and so we do not discuss that variant here.

Cytoplasmic pulling. Cytoplasmic dynein is a minus-end directed molecular motor that attaches and walks along MTs to carry 
cargo. Through this action, dyneins apply pulling forces on the MTs that are equal in magnitude and opposite in direction 
to the force they need to exert to drag the cargo through the cytoplasm. Assuming that dynein motors are uniformly 
distributed in the cytoplasmic volume, the number of motors on MTs increases linearly with their length. As a result, the 
PNC is pulled in the direction of its longest centrosomal MTs. A schematic of this mechanism is shown in Fig. 9(b). This 
pulling mechanism can result in the proper centering and alignment of the PNC in computational models of C. elegans 
embryo [49,51,94,69] that have various degrees of biophysical verisimilitude. In a simple instantiation of this mechanism, 
we treat the density of the attached dyneins as a continuum field with constant number of attachments per unit length of 
MT. Thus, the force per unit length, f E

i (s), and total force, F E
i , applied by cargo-carrying dyneins on the ith MT is given by

f E
i (s) = F dynndyn X i,s(s), and F E

i =
L∫

0

ds f E
i (s) = F dynndyn [X i(L) − X i(0)] , (71)

where F dyn is the magnitude of the force applied from a single motor to an MT, ndyn is the number density of the dyneins 
per unit length, and X i,s is the tangent vector to ith MT, where F dyn is related to the walking speed of the motor by a 
force-velocity relationship as F = F stall(1 − max(|V |, Vmax)/Vmax), where F stall is the maximum force applied by the dynein 
motor on an MT. Moreover, the force and velocity are linearly related through the drag coefficient of the cargo: F dyn = γ V . 
If we take the average radius of the cargos as rcargo = 0.1 μm, and the cytoplasmic viscosity as η = 1 Pa s (see Table 3), 
we can compute F dyn by combining these two force-velocity relationships which gives F dyn = 0.83F stall = 0.91 pN [69]. We 
used F dyn = 0.91 pN in all the simulations of the cytoplasmic pulling mechanism, presented in this paper.

The boundary conditions on MTs are clamped boundary conditions for the minus-ends, prescribed by Eqs. (36) and (38), 
and zero force and torque at the plus-end, given by Eq. (35). Also when the MTs reach the periphery (practically, within the 
small distance �r) they instantaneously go through catastrophe. Hence, no pushing forces are applied on the cortex by MTs.

Finally, we note that in both the cytoplasmic and the cortical pushing mechanisms the rotation of the PNC and the 
alignment of the axis of the MTOC with the AP-axis is achieved by a symmetry-breaking torque instability that arises from 
the coupling between the asymmetry of the shape of the cell periphery and the length dependency of the active forces 
(F E

i = F dyn [X i(L) − X i(0)] and Fb = π2 E/L2) [69]. For a spherically shaped eggshell, both models predict centering of the 
PNC; however the MTOC axis will not align with the AP-axis and due to the stochastic nature of the dynamic instability of 
the microtubules’ polymerization dynamics all the alignment directions are equally sampled over long times.

4.2.3. Other assumptions and simulation setup
Below we outline other assumptions made in simulating pronuclear migration using both cytoplasmic pulling and cortical 

pushing models.
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Previous studies have shown the nuclear envelope encompassing the nucleus is much stiffer than the plasma membranes 
of the cell [20]. Based on this and no observations of substantial deformation of the PNC prior to mitosis, we model the 
PNC as a rigid sphere of radius aP NC = 5 μm [49]. The mechanics of the cell cortex, however, are in principle more involved. 
Many important cellular processes, including cytokinesis, cell crawling, and early motion of the female pronucleus towards 
the male, are achieved by elaborate spatiotemporal deformations of the cell cortex [29]. Nevertheless, the cortex is not 
known to undergo large distortions during the PNC migration stage. For simplicity then we model the cell cortex as a rigid, 
fixed surface.

We assume that microtubules are mechanically clamped to the PNC. We place the anchoring sites slightly away from 
the surface of the PNC at 1.05aP NC . By doing so, we eliminate the possibility of the anchoring points coinciding with the 
surface discretization points of the PNC, which results in the divergence of the velocity field induced by HIs between the 
anchoring point and the PNC. As a result of this modification, we obtain a smooth velocity field on the PNC surface and the 
anchoring points of the MTs.

Our numerical experiments show that changing this radius in the range of 1.02 to 1.15 gives changes in the dynamics 
that are smaller than the fluctuations in the dynamics due to the stochastic dynamic instability. The same procedure was 
used for the interaction between MTs and the outer boundary, i.e. the MTs cannot approach closer than 0.95acor to the 
periphery. Again, changing this distance slightly yielded insignificant changes in the dynamics.

We initialize the simulation by assuming that all MTs start with the same length equal to one-half of PNC radius. The 
PNC is initially positioned towards the posterior side and, in most simulations, on the AP-axis (denoted here by ẑ). We 
also performed a number of simulations where the PNC started 0.25aP NC away from the AP-axis, and we did not observe 
any qualitative change in the dynamics or its time-scales. Finally, the axis of MTOCs is set initially at a 90 degree angle to 
the AP-axis. This setup approximately replicates the in vivo observations and is consistent with previous modeling efforts 
[49,94]. In all simulations we consider N F = 300 fibers, and discretize each with N = 31 points except for one set of 
simulations where N = 51 was chosen to resolve the large fiber deformations arising in cortical pushing simulations (see 
Fig. 14(b)). Both the periphery and the PNC are discretized with 800 points. We use �t = 0.2 s and take about 3 × 105

time-steps. We model the two microtubule arrays attached to the pronuclear complex as being anchored in two regions set 
at opposite poles on the spherical pronuclear complex surface (θ = 0 and θ = π ) defined by the polar angle as θ1 ≤ π/5 and 
θ1 ≥ 4π/5. Our numerical experiments show that �tmax is a strong function of the minimum separation distance between 
the anchoring points on the PNC. To avoid having an arbitrarily small �t we set a minimum distance between the anchoring 
sites by limiting the polar angles to π/36 ≤ θ1 ≤ π/5 and 4π/5 ≤ θ1 ≤ π − π/36. We then use a uniform trapezoidal grid 
in the polar and azimuthal angles to divide θ and ϕ in each pole into 6 and 25 points, respectively. This discretization gives 
6 × 25 = 150 anchoring points for each pole and the total of N F = 300 fibers.

4.2.4. Positioning of the PNC in various cell geometries
We represent the shape of the cell periphery in generalized spherical coordinates for an axisymmetric body:

xcor = R(θ) cos(ϕ) sin(θ), ycor = R(θ) sin(ϕ) sin(θ), and zcor = R(θ) cos(θ), (72)

where ϕ ∈ [0, 2π), and θ ∈ [0, π ]. We consider three different cell shapes, S1,2,3, defined by⎧⎪⎪⎪⎨⎪⎪⎪⎩
S1 : R1

cor(θ) = acor

[
1 − 0.35 cos3 θ − 0.15 sin3 θ

]
,

S2 : R2
cor(θ) = acor [1 + 0.2 cos(2θ) − 0.2 sin(2θ)] ,

S3 : R3
cor(θ) = acor

[
1 − 0.6 sin4 θ

]
.

(73)

Here acor = 25 μm is chosen in accordance with the longest axis of C. elegans embryo (see Table 3). The corresponding 
shapes are shown in Fig. 10. In all cases, the ẑ corresponds to the longest dimension of the cell and its axis of symmetry. In 
shapes S1 and S2 the symmetry is only imposed about the ẑ axis, while shape S3 has a mirror symmetry about the z = 0
plane that cuts through its middle (corresponding to the cell division plane). Also the extent of asymmetry is increased from 
S1 to S2. Thus we can simultaneously observe the effect of the type and extent of symmetry on the migration dynamics of 
the PNC in shapes S1, S2, and S3. These choices of cell confinements in comparison with the typical ellipsoidal shape of the 
embryos also allow us to study how local deformation of the internal geometry of the cell — by, say, the local contraction 
of the actin network of the cortex [19] — can affect the dynamics of migration.

A major effect of changing the cell shape is changing the length distribution of MTs within the cell. Since both cortical 
pushing forces, F (L), and cytoplasmic pulling active forces, F E , depend on the length of the MTs — F (L) ∝ L−2 and F E ∝ L
— and average MT length is not well-separated from typical cell sizes, we expect that the variations in the cell shape result 
in variations in the PNC migration time. Similarly, since asymmetric shape of the cell is a necessary factor in PNC rotation 
and achieving alignment with the AP-axis in both models, rotation time is also expected to change with the geometry.

Figs. 11 to 13 show snapshots of the PNC and its centrosomal MTs as the structure moves and rotates within the 
S1, S2, and S3 cell geometries, respectively, for simulations of both the cortical pushing and cytoplasmic pulling models. 
Also plotted for each case is the temporal evolution of PNC position and the angle α� between its centrosomal axis (the 
vector connecting the two MTOC) and the ẑ axis. The snapshots correspond to different stages in the dynamics: soon 
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Fig. 10. Three different shapes of the cell periphery used in this study corresponding to surfaces given by expressions in Eq. (73).

Fig. 11. Snapshots of the centering process within S1. (a-c) cortical pushing model; (e–g) cytoplasmic pulling model; (d) and (h) the ẑ-component of 
the position of the PNC and angle between MTOC and the ẑ axis as a function of time, for cortical pushing and cytoplasmic pulling models respectively. 
The fibers in all the simulations are colored based on the tension along their length. The colors change from dark red (compressive tension) to dark 
blue (extensile tension) and the white color denotes no tension. For all the simulations of the PNC migration, N F = 300. The turnover time in cortical 
pushing model was taken as τcat = 4 and the number of motors per unit length of the MTs in cytoplasmic model was taken as ndyn = 0.04 (μm)−1. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

after migration begins near the posterior end of cell, after the centering of the PNC, and after the rotation of PNC to its 
steady-state alignment with the ẑ axis. We see that the PNC eventually aligns with the ẑ axis in all three geometries and 
for both models. The conformation of the MTs is very different between the two models. In the cortical pushing simulations 
several MTs are strongly buckled due to the compressive forces at the periphery, while in the cytoplasmic pulling simulations 
MTs are under extensile loads and so remained nearly undeformed.

The most significant dynamical consequence of changing the cell geometry is the large variation in centering and rotation 
times between geometries and force-transduction models. For example, in geometry S1 the rotation times (960 min, and 
150 min) are roughly 5 and 10 times larger than the centering time (200 min and 15 min) in the cortical pushing and 
cytoplasmic pulling simulations, respectively.

In vivo observations of the first cell division in normally-shaped C. elegans embryos, however, show that rotation and 
positioning occur on the same time-scales [50]. Further, while cytoplasmic pulling and cortical pushing mechanisms do not 
predict PNC rotation in spherically shaped eggshells, experiments on such geometries show that the PNC can still properly 
center and align with AP-axis when the embryonic cell is perturbed to be nearly spherical [42,104]. These observations sug-
gest that other active mechanisms, such as cortical pulling where the necessary asymmetry is not induced by the geometry 
but by the anisotropic distribution of cortical dyneins on the periphery, can also be involved in pronuclear migration.
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Fig. 12. Snapshots of centering process within S2. The descriptions and the parameters used are identical to the one provided in the caption of Fig. 11. (For 
interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 13. Snapshots of centering within S3. For details refer to the caption of Fig. 11. (For interpretation of the colors in this figure, the reader is referred to 
the web version of this article.)

Unlike the S1 case, the centering and rotation in the cortical pushing model in the S2 geometry occurs simultaneously 
(240 min) while in cytoplasmic pulling model the rotation time (240 min) is again 10 times larger than the positioning time 
(25 min). Finally in the S3 geometry, centering and rotation happen on the same time-scale (240 min) for both models. The 
faster rotation of the PNC in case S3 may be due to the fact that this is the most anisotropic shape of the geometries.

A few more differences are evident. For example, while the steady-state positions of the PNC in the cortical pushing and 
cytoplasmic pulling models are similar to each other in the S1 and S3 geometries, the final positions for the two models 
differ by 5 μm in S2 geometry. Another observation is that in the S3 cell shape, using the cortical pushing model, the PNC 
becomes trapped for approximately one-half of the migration time in a dynamically semi-stable position 10 μm from the 
center (shown in Fig. 13(b)). Eventually the PNC escapes this dynamical cage as it orients towards the ẑ-axis. To explain 
this behavior we first note that the S3 geometry is roughly two overlapped spheres. The MTs that pass from the posterior 
sphere to the anterior are long and their associated polymerization forces are weak. Thus, the net cortical pushing force on 
the PNC, after it reaches to the center of mass of the posterior sphere, is expected to be small. Hence these positions are 
associated with slower dynamics. In contrast to the cortical pushing model, for the cytoplasmic pulling model the longest 
MTs that polymerize from posterior to anterior side of the cell induce the largest centering forces. As a result this slower 
dynamics is not observed in that model (see Fig. 13(h)).
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Fig. 14. Centering for different turnover times. Snapshot of the conformation of the MTs after reaching the steady state position and alignment, using 
turnover times (a) τcat = 4 s (same as Fig. 11) and (b) τcat = 8 s respectively; (c) the position and alignment angle of the PNC with respect to time for 
τcat = 4 s and 8 s; see Eq. (69). (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

So far, we have only considered the effect of perturbing the cell shape on positioning of the PNC, while biophysical 
parameters were kept fixed. Although we have chosen the parameters of the model based on experimental measurements, 
the experimental uncertainties associated with these parameters, including cytoplasmic viscosity, MT polymerization rates, 
and motor protein densities, are quite significant. Also, many of these parameters — for example the density of the motors 
— are internally regulated by the cell in different stages of the cell division. Thus, it is important to study how the dynamics 
change over feasible ranges of the biophysical parameters. To this end, we simulate PNC migration in S1 after changing 
the MT turnover time to τcat = 8 s in Eq. (69) for the cortical pushing model, and vary the motor protein density as 
ndyn = 0.01, 0.02, and 0.04 (μm)−1 in the cytoplasmic pulling model.

Fig. 14 shows snapshots of the conformation of the MTs after the PNC has reached its steady state position in the S1 cell 
geometry for τcat = 4 s and 8 s. It is clear that the scale of the MT deformations, as well as the number of fibers interacting 
with the periphery, are significantly larger for simulations with larger turnover times.

The centering and rotation dynamics of the PNC for these two turnover times are compared in Fig. 14(c). The main 
observation is that while increasing τcat does not strongly affect the migration dynamics of the PNC, it does strongly affect 
its rotation; Rotation occurs approximately three times faster for τcat = 8 s than for τcat = 4 s. If the only effect of increas-
ing the turnover time was to increase the average polymerization force from the periphery, we would have expected the 
translational and rotational motion to be affected similarly. However, this change plainly has a large effect, for example, on 
the conformation of the centrosomal MTs, and hence on the transmission of the polymerization force to the PNC.

Finally, we study the effect of motor protein density, ndyn , on PNC positioning dynamics for the cytoplasmic pulling 
model in the S1 geometry. For this case, Fig. 15 shows the evolution of PNC position and alignment angle for the different 
values of ndyn . The simplest analysis suggests that the speed of PNC migration is proportional to F E , which would in turn 
suggest that the time to both translate and rotate to proper position halves with each doubling of ndyn . Fig. 15(a) clearly 
shows that the dynamics does not follow this scaling. For the lowest motor density, ndyn = 0.01, the PNC monotonically 
migrates towards its steady-state position and thereafter shows small fluctuations around that position. When the active 
force is increased by 2 and 4 times, the time it takes the PNC to reach its time-averaged steady-state position is reduced 
by a factor of 3 and 9, respectively. This suggests that the speed of translation has a stronger-than-linear scaling with the 
active force.

Another interesting effect of increasing motor density is that the PNC starts to oscillate around its mechanical equilibrium 
position with a well-defined amplitude and frequency. The amplitude of oscillation is greatly increased from ndyn = 0.02 to 
ndyn = 0.04, while the frequency of these oscillations remain roughly unchanged. The source of this rocking motion has 
similarly been related to enhanced activity of molecular motors in that particular stage with the difference that in this 
case the motors are bound to the cell cortex [77]. We have formulated a simple mathematical model based on the relative 
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Fig. 15. Position and angle of the PNC for different dynein densities. (a) The ẑ component of the position of the PNC for three different densities of dynein 
motors, ndyn = 0.01, 0.02, and 0.04 (μm)−1 (b) the alignment angle of the MTOC axis with respect to the ẑ axis with respect to time for different density 
of the motors, ndyn = 0.01, 0.02, and 0.04 (μm)−1.

magnitudes of growth and shrinking velocities compared with the velocity of PNC migration to explain these oscillations (to 
be published elsewhere).

The angle between the axis of MTOCs and ẑ axis at different values of ndyn are plotted in Fig. 15(b). As is seen, the 
alignment time is greatly reduced when ndyn is increased from 0.01 to 0.02 and continues to reduce by roughly a factor of 
2 for ndyn = 0.04. This clearly shows that the rotation time is also not a linear function of the total active force.

In summary we used our numerical platform to study a critical question in the cell division: the effect of confinement 
geometry and biophysical parameters upon the dynamics of pronuclear migration. We used three different geometries, 
and two models for the force transduction on MTs required for the positioning of the PNC, i.e., cortical pushing and the 
cytoplasmic pulling models. Our results show that the time-scales of positioning and rotation of the PNC can change 
by several factors depending upon the choice of model. We showed also that varying the biophysical parameters in our 
force transduction models can change the dynamics tremendously. Finally the steady state orientations and positions of 
the PNC are in general agreement with the experimental results of Minc et al. [65], for geometries that are qualita-
tively similar; direct comparison between these two results is not possible since the geometries are not identical. Also 
the variety of geometries considered in Minc et al. [65] is much larger than what we have studied here. A more sys-
tematic study of the cell size and shape anisotropy (as is done in [65]) would be an interesting extension of the current 
study.

4.3. Sedimentation of a cloud of flexible fibers

Due its importance in industrial settings and fundamental studies, the sedimentation of particles in fluids has been a 
key area of study in suspension mechanics over the past half century. The classical experimental and theoretical litera-
ture on sedimentation of spherical particles in viscous fluids is reviewed by Davis and Acrivos [21] and more recently by 
Guazzelli [34]. There has also been several experimental [39,38,63] and numerical [14,90,101] studies on sedimentation of 
suspensions of rigid fibers. Despite its long history and sustained interest, several aspects of sedimenting suspensions re-
main poorly understood. The origin of many of the complex behaviors has been attributed to the coupling between the long 
range many-body hydrodynamic interactions and the relative arrangement of the particles, which eventually determines the 
collective behavior of the suspension [86]. For example, sedimenting fiber suspensions show formation of inhomogeneous 
clusters of fibers and subsequent enhancement of the sedimentation rate in both numerical and experimental studies [63,
90,101].

An interesting problem in this context is the sedimentation of a cloud1 of particles in a viscous fluid. Adachi et al. [1]
experimentally studied the evolution of a spherically-shaped cloud of a spherical particles. They showed that the cloud 
undergoes complex deformation as it sediments in the fluid. In a repeating cycle, the initial spherical shape of the cloud 
deforms to a torus-like shape. The torus structure eventually breaks into smaller clouds which themselves evolve into tori. 
An extensive overview of this problem and the relevant literature are given in [57,64]. The majority of research involves 
studying clouds formed by spherical particles and the effect of shape anisotropy has been studied to a much lesser extent 
[63,76]. To the best of our knowledge, sedimentation of flexible fibers has not been studied experimentally and simulation 
studies are limited to sedimentation of a single semi-flexible fiber [54]. We also note that, recently Manikantan and Saintil-
lan [60] studied the sedimentation of weakly flexible fiber suspension using particle simulations. In this study the fibers are 
treated as rigid rods to the leading order and the effect of flexibility only enters through the rate of rotation of the fibers 
using a continuum theory proposed by the same authors [59].

A conclusive study of different aspects of sedimentation of a cloud of flexible fibers is beyond of the scope of this work. 
Instead, our aim here is to demonstrate that the present numerical framework can be used to investigate some of these 

1 The volume of the fluid wherein the particles are dispersed.
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aspects by showcasing the dynamics in a limited range of parameter space. We will show that even this limited set of 
results poses a number of interesting physical questions to be further pursued.

4.3.1. Background
For simplicity and for consistency with the previous studies, we non-dimensionalize velocity and length with the initial 

velocity and radius of the cloud, respectively. Taking the cloud to be a spherical droplet with effective excess weight of N F F
and radius R0, the initial velocity of a cloud can be estimated as V c = N F F/(5πμR0) where N F is again the number of 
fibers, and F is the net force acting on each fiber due to their density difference with the fluid.

In dilute suspensions, the flow induced by the sedimenting objects in a Stokesian fluid can be approximated (to the 
first order in volume fraction) by representing each object as a point-force within the fluid where the force is the total 
gravitational force acting on the fiber. Experimental studies on clouds of spherical particles have mostly been limited to 
the dilute regime (φ ≤ 0.20). As a result simulations treating spheres as point-particles have been successful in reproducing 
many of the observed experimental behavior in these systems [64]. In contrast, for a cloud of fibers the fiber lengths can 
be comparable to the radius of the cloud itself and the average distance between the fibers may very well be much smaller 
than their average length, resulting in large effective volume fractions. Thus, reducing the interactions of each fiber with 
the fluid to a point-force becomes exceedingly inaccurate, and the geometry of individual fibers and their HIs need to be 
explicitly included. Such differences in geometry and parameter regime, as well as the flexibility of the fibers is likely to 
result in differences in the evolution of the shape and velocity of a cloud of sedimenting fibers, with respect to clouds of 
spherical particles.

4.3.2. Simulation setup
We assume that all fibers have the same length and weight. The boundary conditions for the two ends of fibers are free, 

and given by relations in Eq. (35). The simulations are initialized by randomly distributing, within an unbounded fluid, the 
center-of-masses of N F = 1024 fibers in a spherical volume of radius R0 = 1. Fiber orientations are also taken as random. 
We use 31 points to discretize each fiber.

For t > 0 a downwards gravitational load, f E = f0 ẑ, is applied to all fibers. The simulations are performed for fibers of 
lengths L ∈ {0.15R0, 0.25R0, 0.32R0, 0.40R0} and aspect ratio of ε = 0.01.

We define the effective volume fraction of the fibers as

φ� = N(L/2)3

(4/3)π R3
0

. (74)

The lengths L = 0.15R0, 0.25R0, 0.32R0, and 0.40R0 correspond to φ� ≈ 0.10, 0.50, 1.00, and 2.00. The flexural rigidity of 
the fibers is chosen to be E = 3.2 × 10−3 f0 R3

0, which results in very small deformation of fibers in the shortest studied 
length and moderate deformation for the longest.

4.3.3. Results
Fig. 16 shows snapshots of the evolution of the fiber cloud as it sediments through the fluid. Certain qualitative features 

are observed for all fiber lengths. In the initial stage of the sedimentation, the fibers align with the ẑ direction and an 
inward cusp is observed in the rear face of the cloud, which is shown in Fig. 16(a). Here the rear and front are defined as 
the parts of the cloud volume with minimum and maximum values of z, respectively.

The front face stretching continues until a torus of fibers is formed, trailed by fibers aligned in the sedimentation di-
rection; See Fig. 16(b). The torus diameter then grows in time while the tail of downward aligned fibers gets longer and 
thinner and eventually pinches off from the torus as is seen in Fig. 16(c). The torus remains stable for up to 150R0 in 
sedimentation distance.

These observations are in general agreement with experiments and simulation results of Metzger et al. [64] and Park et 
al. [76], who studied clouds of spherical particles and rigid fibers. These studies also found that after sedimenting more than 
600R0 the torus structure breaks up into smaller tori. We do not see this in our simulations, most likely due to the shorter 
simulation times. We find that at sedimentation distances larger than 150R0, the fibers in the torus become exceedingly 
close and in near contact and the simulations became numerically unstable. Reducing the time step did not resolve this 
issue. A similar difficulty was reported by Park et al. [76] in their simulations of sedimentation of a cloud of rigid fibers. 
These authors removed this instability by not accounting for HIs between the fibers closer than a cutoff distance. As a result 
the fibers could pass one another without generating numerical difficulties, though at the unknown cost of not properly 
accounting for contact mechanics. We did not pursue that route here, and are currently working on including a model for 
steric interactions between fibers. Another interesting observation is the azimuthal alignment of the fibers within the torus. 
This is seen in the bottom view of the cloud in Fig. 16(d).

The dimensionless velocity of the cloud as a function of the dimensionless sedimentation distance, for different volume 
fractions, is given in Fig. 17. The results for different volume fractions all nearly collapse onto a single curve. At all volume 
fractions, the velocity starts to increase and then reaches a maximum. The maximum roughly corresponds to the configu-
ration shown in Fig. 16(a). Thereafter, the formation of the tail and the leakage of fibers from the front of the cloud into 
the tail results in a monotonic decrease of the velocity. This decrease in sedimentation velocity levels off after the torus 



JID:YJCPH AID:6904 /FLA [m3G; v1.190; Prn:2/11/2016; 12:49] P.29 (1-37)

E. Nazockdast et al. / Journal of Computational Physics ••• (••••) •••–••• 29
Fig. 16. Simulation snapshots of the key stages in the shape evolution of the sedimenting cloud of 1024 flexible fibers with L/R0 = 0.32. (a) The core of 
the cloud increases in speed and the front of the cloud stretches while the rear contracts. (b) A torus-like structure is formed in the front part of the 
cloud, followed by a trail of fibers in the rear. (c) The torus detaches from the trail. (d) the projection of subfigure (c) in r–θ plane to better depict the 
organization of the fibers inside the torus ring.

Fig. 17. The dimensionless velocity of the cloud versus the sedimentation distance at different volume fractions.
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Fig. 18. θ -averaged number density and sedimentation velocity. The number density of the fibers and their relative velocity with respect to the velocity 
of the center of the cloud, computed by sampling the configuration of the fibers from simulations. The time and physical parameters of the simulations 
coincide with the ones illustrated in Fig. 16(a)–(c). White (light) and red (dark) colors denote low and high volume fractions respectively. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

detaches from the tail in z/R0 > 35, where z is the net displacement of the center of the mass of the cloud since the start 
of sedimentation.

A key point is that the dimensionless velocity is primarily determined by the cloud’s traveled distance to the initial radius 
of the cloud, z/R0, and is not explicitly a function of time. We also observe that, similar to the sedimentation velocity, the 
evolution of the shape of the cloud is primarily set by the distance traveled (results not shown here), irrespective of the 
fibers length and their effective volume fraction.

Next, to gain further insight at a more coarse-grained level, we compute the local number density and the velocity of 
the fibers. Considering that the structure is statistically symmetric around the direction of gravitational force, ẑ, we use 
a cylindrical coordinate and average the positions and velocities of the fibers in θ̂ direction. We choose the center of the 
coordinate as (xc, yc, zc) = (0, 0, (max(z) + min(z))/2). Note that the exact value of zc has no effect on the results presented 
here. Fig. 18 illustrates the averaged quantities of interest at the same times shown in Fig. 16(a)–(c) in the r–z plane. The 
number density is color-coded with white (light) denoting zero and red (dark) denoting the largest number density. The 
velocity vectors at any given point represent the velocity of the fibers relative to the average sedimentation velocity of the 
cloud’s center of mass.

The initial form of the velocity field in Fig. 18 resembles the toroidal flows inside of a sedimenting droplet, which 
is in line with the previous theoretical work that treats the cloud as a viscous droplet [21]. The flow structure and the 
concentration variations become more complex in later stages. The velocity field in Fig. 18(c) is reminiscent of the classical 
flow of a vortex ring at high Reynolds numbers. In fact, Wen and Nacamuli [108] reported a similar vortex ring structure for 
sedimentation of particles in inertially dominant flows, i.e. Re � 1, where the evolving shape of the cloud is determined by 
transition from laminar to turbulent flow [108,13].

Along these lines, Tong and Ackerson [100] theoretically demonstrated that the equations of motion describing the 
concentration and velocity fluctuations in dilute suspensions of sedimenting non-Brownian particles are analogous to the 
equations describing turbulent convection at high Prandtl numbers. A more in-depth understanding of this analogy involves 
studying the dynamics of the sedimenting clouds in the framework of non-equilibrium statistical physics. This typically 
includes analyzing the correlation functions of number density and velocity as well as their fluctuations in time and space. 
For the relevant works discussing these aspects, the interested reader is referred to [100,91,86,35,72].

Finally, for a better understanding of the formation of the azimuthally aligned fibers within the torus, we sample and 
monitor q = |X s · θ̂ | in space and time.2 The definition of q gives zero for the fibers aligned in r–z plane and unity for fibers 
aligned in θ̂ direction. The results are shown in Fig. 19. Again, the times coincide with those of Fig. 16.

As can be seen, at early times the fibers are mostly aligned in r–z plane (red color), while a concentration of θ̂ -aligned 
fibers are formed in the front region of the cloud (blue color). At later times, these θ̂ -aligned fibers are migrated to the 
ring-like structure formed within the torus (see the supplementary material).

For the results presented here, although the longer fibers (L = 0.4R0) undergo moderate bending, their deformations 
were not large enough to qualitatively change the overall dynamics and shape of the sedimenting cloud. Another interesting 
direction of research would be to bridge between the observed dynamics of sedimenting polymeric liquids (very flexible 
fibers) [97] to the case studied here by systematically varying the flexibility of the fibers and their volume fraction.

2 Note that in this definition, X s varies along the length of the fibers.
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Fig. 19. Alignment of sedimenting fibers. Variations of q = |X s · θ̂ | in space at the time frames depicted in Fig. 16 and Fig. 18. Recall that θ̂ is the direction of 
the symmetry of the shape of the cloud and X s is the tangent vector of the fiber at the particular sampling point. The colors change from red denoting the 
alignment of the tangent (orientation) vector of the fiber in r–z plane to blue denoting the alignment in θ̂ direction. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

5. Conclusions

We presented a platform for the dynamic simulation of semi-flexible fibrous assemblies immersed in a Stokesian fluid 
with applications to cellular mechanics and suspension mechanics. The hydrodynamic interactions (HIs) of the fibers with 
the fluid and other bodies are described by the non-local slender body theory while a second-kind boundary integral for-
mulation is used for other rigid bodies and the outer confinement. The deformations of the fibers under external flows and 
forces are modeled using the Euler–Bernoulli beam theory. We introduced several modifications with respect to the previous 
numerical treatment of semi-flexible fibers [102], including the spectral representation of the fibers, modeling growth and 
shrinking dynamics of the fibers (important in biological settings), using fast summation techniques (fast multipole method) 
for computing HIs, parallelization of the entire computation scheme, and implicit treatment of the HIs of fibers and particles 
in the time-stepping scheme.

Our numerical tests demonstrate that the method is spectrally accurate in space. Also, due to the use of semi-implicit 
time-stepping, the number of points per-fiber was found to have no effect on the stable time-step. Finally as a result of the 
efficient preconditioning of the linear system, GMRES converges to the solution (with relative error of 10−5) with less than 
16 iterations, for a relatively concentrated assembly of fibers (N f = 2048).

We validated our method against the available theoretical and experimental observations in three representative prob-
lems. Through this process, we found several new directions of research within each problem that can be pursued using 
these numerical techniques. For example, our simulation technique can be used to investigate the problems that arise in the 
flow of suspensions in complex geometries, such as shear-induced migration [26,67,28] and dynamics of flexible filaments 
in microfluidic channels [4].

Our method also enables us to compute actively induced cytoplasmic flows in cellular processes. For example, in a con-
current work on the dynamics of pronuclear migration in cell division, we demonstrate that each active mechanism involved 
in moving the PNC has a distinct flow signature. Such generic features of the flow can differentiate between potential ac-
tive mechanisms. Another important application arises in microrheology measurements, where the motion of a microscopic 
probe (or probes) is used to infer the rheology of the medium [66,110,98]. Within our method it is straightforward to com-
pute the motion of the probe that occurs due to external forcing and the motion of other bodies and a variety of internal 
active mechanisms. Such fundamental studies can form the basis of microscopically informed coarse-grained theories for 
describing the mechanics of cytoskeleton.

Our numerical method can be improved in several ways. While thermal fluctuations are typically negligible for micro-
tubule filaments in cytoskeleton, they play a key role in the dynamics of actin and intermediate filaments as well as the 
dynamics of polymer chains. Thus, to extend the applicability of the platform, thermal fluctuations need to be included 
and we are currently working on this feature. Steric interactions of fibers were also not imposed in our simulations, and 
fibers were allowed to cross one another. While this was a very rare event in our simulations, modeling such interactions is 
required if our framework is to be applied to dense assemblies such as the mitotic spindle structure, dense actin networks, 
and polymer melts above their entanglement concentration.

In this work, we used the first-order backward Euler method for the time stepping with satisfactory results in terms of 
accuracy and stability. In modeling of pronuclear migration in Section 4.2, the fibers grow, shrink and alternate between 
these states, through a Poisson process. As a result, high order backward difference time stepping methods are unneces-
sarily complex and hinder using adaptive time stepping. High order methods based on spectral deferred correction (SDC) 
are successfully used for simulation of vesicles in 2D using boundary integral methods with adaptive time stepping [83]. 
Extension of such method to fiber suspensions is an interesting research direction.
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Although several studies demonstrate the importance of HIs in defining the rheology of synthetic systems such as 
fiber pulps, and the collective dynamics of fibers in cilia and flagellar motion and biofilms [92], these interactions be-
tween the fibers in cytoskeletal assemblies have been almost entirely ignored. The typical justification for this was that 
the long-range HIs beyond the nearest neighbor distance is screened and the dynamics of each individual fiber is dic-
tated by its local interactions with the neighboring fibers [11]. Our example of viscoelastic behavior of a sphere with 
the shell composed of radial microtubules shows that this picture is not correct in all length scales. We observed that 
at times longer than the elastic relaxation time of the fibers, the structure can be modeled as a sphere with a porous 
shell using Brinkman equation. Ignoring the HIs between the MTs would result in a drag coefficient that would lin-
early increase with the number of fibers, in strong contradiction with the predictions of Brinkman equation and our 
simulation results. The forced oscillation simulation on the same structure also revealed that the characteristic relax-
ation time of the porous particle is 25 times shorter than the relaxation time of individual fibers which shows that 
many-body HIs substantially modify the elastic properties of the material as well. Thus in attempting to model the 
HIs through coarse-grained relationships, the underlying assumptions and their correctness in the relevant time- and 
length-scale must be scrutinized. In this regard, direct simulation provides a powerful tool to inform the reduced mod-
els.
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Appendix A. Flow of a rigid sphere with a porous shell within a concentric spherical confinement

Consider a composite sphere with a rigid sphere core and an isotropic porous shell centered in a spherical confinement 
(see Fig. A.20 for schematics). Our goal to solve for the flow induced by the motion of this structure by an external force 
in the Stokes flow regime. We will then use the flow to compute the drag force on the spherical structure. We model the 
porous medium (rm ≤ r ≤ rs) by the Brinkman equation:

μ∇2u − ∇p = μ

κ

(
u − U body

)
and ∇ · u = 0, (A.1)

where u and U body are the velocities of the fluid and the porous domain, respectively. The term −(μ/κ)(u − U body) is the 
frictional force applied by the porous media on the fluid due to their relative motion, and κ is the permeability coefficient.

For rs < r < rc the Stokes equation governs the fluid motion. Flow incompressibility, ∇ · u = 0, is applied in both regions. 
The boundary conditions for velocity at r = rm and r = rc are no-slip. On the interface of the porous and fluid, r = rs , 
the boundary conditions are continuity of fluid stress and velocity. For convenience we rewrite the equations in terms of 
ũ = u − U body, and represent the velocity in spherical coordinates, ũ = (ũr, ̃uθ , ̃uϕ). Since the inner sphere is located at the 
center, the flow is axisymmetric, i.e., ũϕ = 0 and ũ(r, θ) with θ ∈ [0, π ]. The boundary conditions in this situation simplify 
to: ⎧⎪⎪⎨⎪⎪⎩

r = rm :ũB
r (rm, θ) = 0, ũB

θ (rm, θ) = 0,

r = rs : ũB
r (rs, θ) = ũ F

r (rs, θ), τ B
rθ (rs, θ) = τ F

rθ (rs, θ), pB(rs, θ) = pF (rs, θ),

r = rc : ũ F
r (rc, θ) = −Ubody cos θ, ũ F

θ (rc, θ) = Ubody sin θ,

(A.2)

where p and τrθ are the pressure and tangential component of the stress tensor, the B and F superscripts re-
fer to the Brinkman and fluid domains, respectively, and the porous sphere moves in the ẑ direction, i.e., U body =
Ubody ẑ.

Due to the axisymmetry of the flow, we can formulate the velocity fields in terms of the Stokes stream functions, for 
which

ũr = − 1

r2 sin θ

∂ψ

∂θ
, (A.3a)

ũθ = 1

r sin θ

∂ψ

∂r
. (A.3b)

The Brinkman equation for rm ≤ r ≤ rs and the Stokes equation for rs ≤ r ≤ rc can be rewritten, respectively, in terms of ψ
as
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Fig. A.20. Schematic of a composite sphere with a rigid spherical core and a porous shell in confinement. (For interpretation of the colors in this figure, the 
reader is referred to the web version of this article.)

E4ψ� − 1

κ
E2ψ� = 0, rm ≤ r ≤ rs (A.4a)

E4ψ = 0, rs ≤ r ≤ rc (A.4b)

where

E2 = ∂2

∂r2
+ sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. (A.4c)

The general solutions to Eq. (A.4a) and Eq. (A.4b) are

ψ(ξ, θ) =
(

−κU∞
2

sin2 θ

)
� = −κU∞

2
sin2 θ

[
Aξ−1 + Bξ + Cξ2 + Dξ4

]
, (A.5a)

ψ�(ξ, θ) =
(

−κU∞
2

sin2 θ

)
�� (A.5b)

= −κU∞
2

sin2 θ
[

Eξ−1 + F ξ + G
(
ξ−1 cosh ξ − sinh ξ

)
+ H

(
ξ−1 sinh ξ − cosh ξ

)]
,

where ξ = r/
√

κ . We then use Eq. (A.3a) and (A.3b) to rewrite the boundary conditions given in Eq. (A.2), as:

�� = 0, ξ = rm/
√

κ (A.6a)

∂��

∂ξ
= 0, ξ = rm/

√
κ (A.6b)

� − �� = 0, ξ = rs/
√

κ (A.6c)

∂(� − ��)

∂ξ
= 0, ξ = rs/

√
κ (A.6d)

∂2(�� − �)

∂ξ2
= 0, ξ = rs/

√
κ (A.6e)

∂3(�� − �)

∂ξ3
− ∂��

∂ξ
= 0, ξ = rs/

√
κ (A.6f)

� = ξ2, ξ = rc/
√

κ (A.6g)

∂�

∂ξ
= −2ξ. ξ = rc/

√
κ (A.6h)

The unknown coefficients, A to H , are determined by imposing Eq. (A.6h). Writing the final expressions for these equa-
tions would take several pages. Instead we provide the piece of MATLAB code that gives their expressions using symbolic 
computation:
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clc;clear;
syms A B C D E F G H a b c r
% r corresponds to $\xi$
% $a, b, c$ correspond to $r_m\sqrt \kappa$, r_s/\sqrt \kappa, r_x/\sqrt \kappa$ in the text,

respectively.
% $\psi_0$ and $\psi_1$ correspond to $\Phi$ and $\Phi^\star$ in text, respectively.
psi_0 = A/r+B*r+C*r^2+D*r^4;
psi_1 = E/r+F*r^2+G*(cosh(r)/r-sinh(r))+H*(sinh(r)/r-cosh(r));

dpsi0_dr = diff(psi_0,r);
d2psi0_dr = diff(psi_0,r,2);
d3psi0_dr = diff(psi_0,r,3);
dpsi1_dr = diff(psi_1,r);
d2psi1_dr = diff(psi_1,r,2);
d3psi1_dr = diff(psi_1,r,3);

psi0_b = subs(psi_0,r,b);
dpsi0_dr_b = subs(dpsi0_dr,r,b);
d2psi0_dr_b = subs(d2psi0_dr,r,b);
d3psi0_dr_b = subs(d3psi0_dr,r,b);
psi0_c = subs(psi_0,r,c);
dpsi0_dr_c = subs(dpsi0_dr,r,c);

psi1_a = subs(psi_1,r,a);
dpsi1_dr_a = subs(dpsi1_dr,r,a);
psi1_b = subs(psi_1,r,b);
dpsi1_dr_b = subs(dpsi1_dr,r,b);
d2psi1_dr_b = subs(d2psi1_dr,r,b);
d3psi1_dr_b = subs(d3psi1_dr,r,b);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Applying the BCs 1-8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
eqns = [psi1_a==0, dpsi1_dr_a==0,psi1_b-psi0_b==0,dpsi1_dr_b-dpsi0_dr_b==0,...

d2psi1_dr_b-d2psi0_dr_b==0, d3psi1_dr_b-dpsi1_dr_b-d3psi0_dr_b==0,...
psi0_c==-c^2, dpsi0_dr_c==-2*c];

% Solving for the unknown coefficients
S = solve(eqns,A,B,C,D,E,F,G,H);

A0 = S.A;B0 = S.B;C0 = S.C;D0 = S.D;
E0 = S.E;F0 = S.F;G0 = S.G;H0 = S.H;

The results for A0 to H0 in the code correspond to the coefficients A to H . The total force, F , on the structure is 
calculated by integrating stress distributions over the surface [36]:

F = 2πr2
s

∫
[τrr cos θ − τrθ sin θ]dθ. (A.7)

After substituting the solutions for ψ into Eq. (A.7), it can be simplified to

F = 6πηU∞rs
(
2B

√
κ/3rs

)
, (A.8)

yielding for the drag coefficient of the composite sphere

C = Cs
2B

√
κ

3rs
. (A.9)

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jcp.2016.10.026.
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